UNIT ONE
 WHOLE NUMBERS AND THE FOUR OPERATIONS

Unit Outcomes: After completing this unit, you should be able to:

- understand and have deep knowledge about whole numbers.
- perform the four fundamental operations on whole numbers.
- apply your knowledge of whole numbers to solve problems in your environment.

Introduction

In earlier grades, you have learnt about whole numbers up to 1,000,000, their properties and basic mathematical operations upon them. After a review of your knowledge about whole numbers, you will continue studying whole numbers greater than $1,000,000$, and the four operations in the present unit.

1.1 Whole Numbers Greater Than 1,000,000 1.1.1 Revision of Whole Numbers Up to $\mathbf{1 , 0 0 0 , 0 0 0}$

Activity 1.1

1. What is the name given to the numbers $0,1,2,3,4,5, \ldots$?
2. What is the least whole number? Is there any largest whole number?
3. Identify a possible pattern. Use the pattern to write the next four numbers.
a) $10,000,20,000,30,000$, \qquad , \qquad , \qquad , \qquad
b) $100,000,200,000,300,000$, \qquad . \qquad , _ـ_ . \qquad

Do you remember how to read and write whole numbers up to 1,000,000? In your previous study of Mathematics lessons on whole numbers, you have learnt about place value.

Figure 1.1
How do you read the whole number 891,412? Can you write the whole number 'three hundred seventeen thousand sixty' and show to your partner? In order to help you revise the lessons on whole numbers up to $1,000,000$ you have studied earlier attempt each of the problems given in the following exercise.

Exercise 1A

1. Read these numbers.
a. 136,042
c. 390,071
e. 522,202
g. 800,304
b. 218,606
d. 467,319
f. 650,505
h. 430,713
2. Match a number with its word expression.

Column A

Column B

i. 100,003
ii. 430,006
iii. 896,750
iv. 540,809
v. 318,014
vi. 594,713
vii. 405,028
viii. 317,065
a. five hundred forty thousand eight hundred nine
b. One hundred thousand three
c. Four hundred thirty thousand six
d. Three hundred eighteen thousand fourteen
e. Eight hundred ninety six thousand seven hundred fifty
f. Three hundred seventeen thousand sixty five
g. Four hundred five thousand twenty eight
h. Five hundred ninety four thousand seven hundred thirteen
i. One hundred thousand thirty
j. Four hundred five thousand eighty two
k. Three hundred eighteen thousand fourty
3. Write these numbers in words.
a. 100,350
b. 206,570
c. 160,080
d. 320,010
e. 485,675
f. 860,003
g. 973,468
h. 98,764
4. Write down the place value of 6 in each of these numbers.
a. 324,761
b. 406,117
c. 218,416
d. 163,514
e. 258,629
5. Write these numbers in figures (the first one is done for you)
a. One hundred forty thousand 140,000 .
b. One hundred seventy thousand six hundred thirty.
c. Two hundred five thousand three hundred eighty.
d. Five hundred sixteen thousand four hundred nine.
e. Six hundred three thousand twenty seven.
f. Ninety thousand seventy four.
g. Seven hundred eighty five thousand two hundred twelve.
6. Comparing and ordering: Draw a line under the greatest number in each group.
a. 97,000
b. 388,000
c. 689,400
705,000
326,000
652,800
423,000
362,000
630,900

1.1.2 Whole Numbers Greater Than 1,000,000

What number comes after 999,999?

Figure 1.2
We need a new place value. Ten hundred thousand make a thousand thousands which is a million. You can see that one million is a 7 digit number. When do we count in millions?

Have you heard people talking about millions? What do you know about stars and planets?

1 WHOLE NUMBERS AND THE FOUR OPERATIONS
Did you know that the sun is about $150,000,000 \mathrm{~km}$ away from Earth?
Find out the names of the other planets and how far they are from the sun, where 1 Mile $\approx 1.6 \mathrm{~km}$.

Figure 1.3

Planet	Miles from the sun	Km from the sun	Planet	Miles from the sun	Km from the sun
Mercury	$\mathbf{3 6}$ million		Saturn	$\mathbf{8 8 6 . 1}$ million	
Venus	$\mathbf{6 7 . 2}$ million		Uranus	$\mathbf{1 7 8 3 \text { million }}$	
Earth	92.9 million		Neptune	2793 million	
Mars	141.5 million		Pluto	$\mathbf{3 6 7 0}$ million	
Jupiter	483.3 million				

Do you know (according to CSA, 2007) that the population of Ethiopia is about 74 million?

There are more people in India than in most countries. India alone has more than 900 Million people. How many times is/India's population bigger than Ethiopia's population? What is the population of your region?

Activity 1.2

Write these numbers in words. The first one is done for you.
a. $3,500,820$ three million five hundred thousand eight hundred twenty
b. $7,416,035$ \qquad
c. $8,042,107$ \qquad
d. 9,104,060 \qquad
e. 12,000,000 \qquad

Grade 5 Student Text

Study the following example

Example 1

Writing numbers in figures. Say this number: Three Million four hundred seventy thousand fifty.
How will you write this in figures?
Remember we break up the numbers and write them in groups, like this.

Three million
Four hundred seventy thousand Fifty 3,000,000
$+470,000$
$\begin{array}{r}50 \\ \hline\end{array}$ 3,470,050

Group work 1.1

1. Convert 8000 kilometers in to meters.
2. Convert 900 kilometers in to centimeters.

In addition to reading and writing whole numbers, you can also find the predecessor (except zero) and successor of a whole number.

Example 2

a) What whole number comes before $\mathbf{3 , 4 6 5 , 2 8 7}$? The number that comes before $\mathbf{3 , 4 6 5 , 2 8 7}$ is less by 1 . That is, $\mathbf{3 , 4 6 5 , 2 8 7 - 1}$. Therefore $3,465,286$ is the Predecessor of $\mathbf{3 , 4 6 5 , 2 8 7}$.
b) What whole number comes after 2,746,352?

Remember that the number that comes after $2,746,352$ is greater by 1 . That is $2,746,352+1$. Therefore, $2,746,353$ is the successor of 2,746,352.

ITOte

1. Any whole number \mathbf{n} different from 0 has a predecessor " $n-1$ " and a successor "n+1".
2. There is no largest whole number (why?)
3. Zero is the smallest whole number.

Exercise 1 B

1. Write these numbers in figures.
a. Five million, eight hundred four thousand, twenty.
b. Eight million, nine hundred six thousand, one hundred thirty two.
c. Nine million thirty thousand, four hundred three.
2. Write the numbers in words. The first one is done for you.
a. A heart beats about $37,000,000$ times each year.

Figure 1.4
b. Most people blink about 5,625,000 times each year
c. One Megabyte is $1,048,576$ bytes.
d. Africa has an area of $30,271,000 \mathrm{~km}^{2}$ \qquad
3. Determine the predecessor and successor of each the following numbers.

Predecessor

a. $3,406,705$
b. $5,167,428$
c. $9,582,396$
d. $8,005,104$
e. $6,767,221$

Successor
\qquad
\qquad
\qquad
\qquad
\qquad
4. Write each missing number.

5. Compare the numbers using $>,<$ or $=$. The first one is done for you.
a. $5,370,002>5,370,001$
b. $3,820,013$ \square $3,820,012$
c. $6,540,000$ \square $540,000+6,000,000$
d. $7,630,009$ \square $7,630,010$
e. $8,999,026$ \square $8,999,025$

I.I. 3 Place Value and Ordering of Whole Numbers

Activity 1.3

Arrange the digits of the number 214,587 to get the
a) smallest six digit number possible
b) largest six digit number possible

Remember that you have learnt about place value and ordering of whole numbers upto $1,000,000$. Here you will learn about place value and ordering of whole numbers in more detail.

1 WHOLE NUMBERS AND THE FOUR OPERATIONS

a) Finding the place value of a digit in a whole number

The position of each digit in a number determines its place value. A place use the same chart is shown next for the whole number $48,337,000$.

Figure 1.5
The two 3 s in $48,337,000$ represent different amounts because of their different placements. The place value of the 3 on the left is hundredthousands. The place value of the 3 on the right is ten-thousands.

Study the following examples

Example 3

The place value of the digits of the number $\mathbf{4 , 6 9 5}, \mathbf{7 8 3}$ is shown below.

5 Thousands

We write the expansion of the given number as
$4,695,783=4,000,000+600,000+90,000+5,000+700+80+3$ $=(4 \times 1,000,000)+(6 \times 100,000)+(9 \times 10,000)$
$+(5 \times 1,000)+(7 \times 100)+(8 \times 10)+3$

Example 4

The palce value of the digits of the number $5,793,612$ is shown below
Place Value chart

Millions	Hundred Thousands	Ten Thousands	Thousands	Hundreds	Tens	Ones
$\mathbf{1 , 0 0 0 , 0 0 0}$	$\mathbf{1 0 0 , 0 0 0}$	10,000	$\mathbf{1 , 0 0 0}$	100	10	$\mathbf{1}$
5	$\mathbf{7}$	$\mathbf{9}$	$\mathbf{3}$	6	$\mathbf{1}$	$\mathbf{2}$

The expansion is as follows:

$$
\begin{aligned}
5,793,612= & (5 \times 1,000,000)+(7 \times 100,000)+(9 \times 10,000) \\
& +(3 \times 1,000)+(6 \times 100)+(1 \times 10)+2
\end{aligned}
$$

Group work 1.2

1. What is the place value of 7 in the whole number $27,431,568$?
2. Write the expansion of the whole number $8,697,351$.

b) Ordering of whole numbers

In addition to telling the place value of whole numbers you can also order and compare them.

Study the following examples

Example 5

We are going to compare large numbers and order them.
a. Putting numbers in order:

To put numbers in order, look at the digits with the same place value. Start at the left.
7546 > 7364

Look here first

The thousands digits are the same.
The hundreds digits are 5 and 3.
$5>3$
So 7546 > 7364
b. Compare and order

$\mathbf{7 1 2 , 3 4 0}$	$\mathbf{5 2 9 , 7 9 8}$	$\mathbf{6 4 5 , 9 3 8}$	$\mathbf{1 , 3 0 6 , 4 9 3}$
$\mathbf{6 , 7 9 0 , 1 0 4}$			
$\mathbf{6 4 5 , 3 4 9}$	$\mathbf{5 , 4 3 8 , 6 5 4}$	$\mathbf{2 , 0 0 9 , 8 7 0}$	$\mathbf{9 1 7 , 5 0 3}$
$\mathbf{4 , 8 7 7 , 4 2 8}$	$\mathbf{6 8 9 , 7 4 0}$		

First arrange them vertically with the ones in a line.
712,340 Step 1. List the numbers with 529,798 the largest number of 645,938 1,306,493 Step 2. Compare the highest

6,790,104
645,349
5,438,654
2,009,870 917,503
4,877,428 689,740 digits
place value digits and order.
Step 3. When there are equal digits re-order using the next lower digit
Step 4. Order other groups of numbers with equal number of digits using steps 1,2 and 3

6,790,104
5,438,654
4,877,428
2,009,870
1,306,493
917,503
712,340
689,740
645,938
645,349
529,798

Exercise 1.C

1. Write the place value of the underlined number.
a. $\underline{7,816,489}$
b. $6,594, \underline{0} 38$
c. $4, \underline{9} 76,096$
d. $3,80 \underline{0}, 667$
e. $2,6 \underline{4} 8,143$
2. Write the following numbers in expanded form.
a. $2,536,879$
b. $1,546,308$
c. $7,089,461$
d. $8,571,026$
e. $9,988,472$
3. Write the number for the following.
a. $(3 \times 1,000,000)+(6 \times 10,000)+(8 \times 100)+(4 \times 10)+3$
b. $(6 \times 1,000,000)+(8 \times 100,000)+(7 \times 1,000)+(3 \times 10)+9$
c. $(4 \times 1,000,000)+(5 \times 1,000)+(6 \times 100)+7$
d. $(8 \times 1,000,000)+(3 \times 100)+8$
4. Which numbers are missing?

5. Write a number which has:
a. 6 digits, with 8 in the Ten Thousands position.
b. 7 digits, with 7 in the Hundred Thousands position.
c. 7 digits, with 3 in the millions position.
6. Compare the following using $>$, $<$ or $=$
a. $4,325,270$
 $4,246,370$
b. $3,507,469$

3,206,986
c. $5,651,845$

5,461,835
d. $2,453,578$ \square
e. $9,678,450$ \square 9,768,675
7. Count in hundred-thousands and list the numbers. The first one is done for you.
a. From 124,000 to 524,000

$$
124,000, \quad 224,000, \quad 324,000, \quad 424,000, \quad 524,000
$$

b. From 230,000 to 930,000
c. From 376,000 to 776,000
8. Count in millions and list the numbers.
a. From $1,250,000$ to $6,250,000$
b. From $4,600,000$ to $9,600,000$
9. Order these numbers

| 423,635 | 947,534 | $3,604,376$ | 837,209 | $5,628,370$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 480,982 | 408,893 | 469,743 | $6,086,304$ | 873,276 |

I.I. 4 Even and Odd Whole Numbers

Remember that you have learnt about Even and Odd whole numbers in your previous mathematics lessons. Even numbers end in $0,2,4,6$ and 8, and odd numbers end in $1,3,5,7$ and 9.

Activity 1.4

1. List even numbers between $1,253,401$ and $1,253,411$
2. List odd numbers between $2,430,678$ and $2,430,688$
3. Complete
a. $3,570,602 \quad 3,570,604 \quad 3,570,606$ \qquad
\qquad 3,570,618
b. 6,620,403 6,620,405 6,620,407 \qquad 6,620,419
4. Find the number.
a. I am an even number. I come between $2,438,670$ and $2,438,674$. What number am I?
b. I am an odd number. I come between $3,156,257$ and $3,156,261$. What number am I?
5. Use seven small pieces of card (or paper) numbered 1 to 7

Figure 1.7
a. Write 4 even numbers with three digits.
b. Write 4 odd numbers with four digits.

Here you will learn about properties of even and odd numbers in more detail.

Study the following examples:

Example 6

a) Both $\mathbf{2 3}$ and $\mathbf{4 5}$ are odd numbers. But their sum:
$23+45=68$ is an even number.
b) Both 32 and 54 are even numbers. Also their sum:
$32+54=86$ is an even number.
c) Consider the sum of an even number and an odd number: $32+45=77$ is an odd number.

Group work 1.3
What can you conclude about
Even + Even?
Odd + Odd?
Even + Odd?

Exercise 1.D

Determine whether each of the following statements is true or false.

1. The sum of two even numbers is even.
2. The sum of two odd numbers is odd.
3. The sum of an odd number and an even number is an even number.
4. An even number is divisible by 2 .
5. If a number ends in 7 , then it is odd.
6. The sum of three odd numbers is odd.
7. The sum of any five whole numbers is odd.
8. The sum of any four consecutive whole numbers is even,

1.2 Operation on Whole Numbers

1.2.1 Addition and Subtraction of Whole numbers

Activity 1.5

In a magic square, the sums of the numbers in every row, column, and diagonal are equal.

What are the missing numbers?

a	71	b
99	c	155
113	183	85

Figure 1.8

You know that addition, subtraction, multiplication and division are four fundamental operations of mathematics. Here, you will learn about the properties of these operations on whole numbers.

Example 7

a. What is the missing number in
$4+\square=7$ and $\square+4=7$?
Did you answer " 3 "? That's good. What do you notice then?
$4+3=3+4=7$
Do you remember the commutative property of addition? $\mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a}$ for two whole numbers \mathbf{a} and \mathbf{b}.
b. Consider the sum $(3+4)+5$ and $3+(4+5)$. Is the sum equal? Do you remember the associative property of addition?
$(a+b)+c=a+(b+c)$ for three whole numbers a, b, and c
c. What is the missing number in both

$$
\square+4=4 \text { and } 4+\square=4 ?
$$

Do you remember the property of 0 on whole numbers?
$x+0=0+x=x$ for a whole number \mathbf{x}.
Do the above three properties hold true for subtraction? Why?

When we add numbers we need to keep the digits in the correct columns, and take care with grouping and regrouping. Here are some examples. Study the examples carefully.

Example 8

$\begin{array}{r} 624236 \\ +133495 \\ \hline \end{array}$	Step 1. 6 and 5 ones are 11 ones. 11 ones make 1 Ten and 1 one. Write 1 carry
757731	ten.
	Step 2. 1,3 and 9 Tens are 13 Tens. 13 Tens make 1 hundred and 3 Tens. Write 3 carry 1 Hundred.

Step 3. 1,2 and 4 Hundreds are 7 Hundreds. Write 7.
Step 4. 4 and 3 Thousands are 7 Thousands. Write 7.
Step 5. 2 and 3 Ten Thousands make 5 Ten Thousands.
Write 5.
Step 6. 6 and 1 Hundred Thousands make 7 Hundred Thousands. Write 7.

Example 9

334297 Step 1.7 and 8 ones are 15 ones. Write 5. Carry $+495968 \quad 1$ Ten.

Step 2. 1, 9 and 6 Tens are 16 Tens. Write 6. Carry 1 Hundred.
Step 3. 1,2 and 9 Hundreds are 12 Hundreds. Write 2, carry 1 Thousand.
Step 4. 1,4 and 5 Thousands are 10 Thousands write 0. Carry 1 Ten Thousands.
Step 5. 1,3 and 9 Ten Thousands make 13 Ten Thousands. Write 3. Carry 1 Hundred Thousands.
Step 6. 1,3 and 4 Hundred Thousands make 8 Hundred Thousands. Write 8.

Group work 1.4
Add

Irote tinat Subtraction is the reverse process of addition.

83	0265					
-						
33	42	97				
49	59	68	and $-\quad$	83	02	65
:---:	:---:	:---:				
49	59	68				
33	42	97				

Example 10

56542 Step 1. 2 ones, take away 6, I can't. Take 1 Tens leaving 3. Change it to 10 ones, 12 ones, take away 6 is 6 . Write 6.
Step 2. 3 Tens, take away 8, I can't. Take 1 hundred leaving 4. Change it to 10 Tens. 13 Tens, take away 8 is 5 . Write 5.
Step 3. 4 Hundreds, take away 8, I can't. Take 1 Thousands leaving 5. Change it to 10 Hundreds. 14 Hundreds, take away 8 is 6. Write 6.
Step 4. 5 Thousands, take away 6, I can't, take 1 Ten Thousands leaving 4. Change it to 10 Thousands. 15 Thousands, take away 6 is 9, write 9.
Step 5. 4 Ten Thousands, take away 3, is 1, write 1.

ITOte tinat

56542

- 19656 36886

36886
$+\underline{56542}$

Activity 1.6

1. Write the missing numbers.
a. $8+\square=8$
b. $\square+9=9$
c. $10-\square=10$
d. $(6+7)+\square=6+(7+8)$
e. $(300+500)+600=300+(500+\square)$
f. $2,456+3,580=3,580+\square$
2. Complete. The first one is done for you.
a. 38
$\begin{array}{r}+54 \\ \hline 9 \square^{2}\end{array}$

92
$\begin{array}{r}-38 \\ \hline 54\end{array}$
$\begin{array}{r}-54 \\ \hline 38\end{array}$
b. 432

c. 5445

3. If we add any two whole numbers a and b, is it true that the new number is also a whole number?
4. Write >, < or $=$ in the box in order to compare.
a. $232,567+687,758$ \square $354,743+467,869$
b. $358,676+576,589$ \square $2,121,342+3,436,536$
c. $6,234,238-4,867,786$ \square $7,158,349-3,283,898$

Let us deal with solving word problems related to real life.

Example 11

A book has 1549 letters on the first page, 1672 on the second page and 1847 on the third page. What is the total number of letters on the first three pages?

Solution: 1549

$$
\begin{array}{r}
+1672 \\
1847 \\
\hline 5068
\end{array}
$$

There are 5,068 letters on the first three page

Figure 1.9

Example 12

A woman has Birr twenty three thousand, eight hundred forty but had to pay Birr two thousand five hundred seventy five for some clothes. How much did she have left?

Solution: 23840

$$
-\frac{2575}{21265}
$$

She was left with Birr 21,265.

Exercise 1.E

1. Add or subtract.
a) 43257
b) 56674
c) 727585
$+15894$
$\begin{array}{r}+48486 \\ \hline\end{array}$
$\begin{array}{r}+575869 \\ \hline\end{array}$
d) \qquad e) 79024
-68968
f) 810731
-799843
2. A ship carries 8,754 bags of cocoa and 1,296 bags of coffee. How many bags are there altogether?
3. A large farm had seven thousand seven hundred cattle. They bought one thousand, five hundred seven more cattle. How many cattle/did the farm have altogether?

Figure 1.10
4. The number of people in three towns are $12,542,11,460$ and 13,627 . What is the total population of all the three towns?
5. In a factory where eight thousand, four hundred thirty two people worked, four thousand, nine hundred seventy one were men. How many women worked at the factory?
6. The male population of Ethiopia in the year 2007 (according to CSA) was $37,296,657$ and the female population was $36,621,848$.
a. Which was the larger population-male or female?
b. What was the total population of Ethiopia?
c. Find the difference between female and male populations.

Figure 1.11
7. A man had Birr 1,052,747 in his bank account. If he withdrew Birr 905,002 and Birr 87,445 in two consecutive months, then how much money was left in his account?
8. In one year, $33,000,000$ boxes of lemons and limes were produced. $1,200,900$ boxes were limes. How many boxes of lemons were there?

1.2.2 Multiplication of Whole Numbers

Activity 1.7

One packet contains 6 pencils. How many pencils are in 3 packets?
What is 3×6 ?
Is 6×3 the same as 3×6 ?
$3+3+3+3+3+3=$ \qquad and $6+6+6=$ \qquad
What do you conclude?

Remember that multiplication is a repeated addition. You have learnt how to multiply two natural numbers. In this section you will study some properties of multiplication on whole numbers in more detail.

1. Multiplication of numbers is commutative. That is, if a and b are whole numbers, then $\mathbf{a} \times \mathbf{b}=\mathbf{b} \times \mathbf{a}$.
Does the associative property apply to multiplication?
Multiply $2 \times 3 \times 5$.

$$
\begin{aligned}
2 \times 3 \times 5 & =(2 \times 3) \times 5 \text { or } 2 \times 3 \times 5=2 \times(3 \times 5) \\
& =6 \times 5 \\
& =30
\end{aligned}
$$

2. The associative property also applies to multiplication. That is, if \mathbf{a}, \mathbf{b} and \mathbf{c} are three whole numbers, then $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}=\mathbf{a} \times(\mathbf{b} \times \mathbf{c})$.
3. Look at this multiplication.

$$
25 \times(10+2)=25 \times 12=300
$$

Is it true that $25 \times(10+2)=(25 \times 10)+(25 \times 2)$?
$(25 \times 10)+(25 \times 2)=250+50=300$
Cheek with 45×8
Is it true that $45 \times 8=(40+5) \times 8$?

$$
\begin{aligned}
(40+5) \times 8 & =(40 \times 8)+(5 \times 8) \\
& =320+40 \\
& =360
\end{aligned}
$$

This is called the distributive property of multiplication over addition. That is, if \mathbf{a}, \mathbf{b} and \mathbf{c} are three whole numbers, then

$$
\mathbf{a} \times(\mathbf{b}+\mathbf{c})=(\mathbf{a} \times \mathbf{b})+(\mathbf{a} \times \mathbf{c})
$$

4. You have seen that $2 \times 1=1 \times 2$ and also $2 \times 1=2$ and $1 \times 2=2$. Observe that any whole number multiplied by 1 stays the same. That is, if a is a whole number, then $\mathbf{a} \times 1=1 \times \mathbf{a}=\mathbf{a}$
5. Multiplication property of 0 is given below: $4 \times 0=0 \times 4$ and also $4 \times 0=0$ and $0 \times 4=0$.
Here we understand that any number multiplied by zero equals zero. That is, if \mathbf{a} is a whole number, then $\mathbf{a} \times 0=0 \times \mathbf{a}=0$

Group work 1.5

Tigist's heart rate is 78 beats per minute. Almaz's heart rate is 80 beats per minute. How many times do their heart beat altogether in 3 minutes?

The following example discusses the use of the distributive property. Study the example carefully

Example 13

$$
\begin{aligned}
3,457 \times 28 & =3,457 \times(20+8) \\
& =(3,457 \times 20)+(3,457 \times 8) \\
& =(3,457 \times 2 \times 10)+(27,656) \\
& =(6,914 \times 10)+27,656 \\
& =69,140+27,656 \\
& =96,796
\end{aligned}
$$

Activity 1.8

Complete

$$
\text { a. } \begin{aligned}
4,326 \times 15 & =4,326 \times(10+5) \\
& =(4,326 \times 10)+(4,326 \times \square) \\
& =(\square)+(\square) \\
& =\square
\end{aligned}
$$

b. $3,674 \times 28=3,674 \times(\square+\square)$

$$
\begin{aligned}
& =(3,674 \times \square \times 10)+(3674 \times \square) \\
& =(\square \times 10)+\square) \\
& =(\square+\square) \\
& =\square
\end{aligned}
$$

c. $4,318 \times 34=4,318 \times(\square+\square)=(4,318 \times \square \times 10)+$ $(4,318 \times \square)$

$$
=(\square \times 10)+\square=\square+\square=\square
$$

d. $7,508 \times 63=7,508 \times(\square+\square)$

$$
\begin{align*}
& =(7,508 \times \square \times 10)+(7,508 \times 1 \\
& =(\square \times 10)+\square \\
& =\square+\square \\
& =\square
\end{align*}
$$

Study the steps when multiplying two whole numbers in the following example.

Example 14

Multiply

a. 287 Step 1. 3×7 ones $=21$. Write 1 and carry 2 Tens.
$\begin{array}{r} \\ \times \quad 3 \\ \hline 861\end{array}$
Step 2. 3×8 Tens $=24$.
$24+2=26$. Write 6 and carry 2 hundreds.
b. 457

28
$\times 26$
3656
9140
12796
Step 3. 3×2 Hundreds $=6$
$6+2=8$
Step 1. $8 \times 7=56$, write 6 , carry 5 Tens.
Step 2. $8 \times 5=40,40+5=45$
Step 3. $8 \times 4=32$ hundreds

Multiply by 10: write 0 . Then multiply by 2.
Step 4. $2 \times 7=14$ Tens, write 4, carry 1 Hundred.
Step 5. $2 \times 5=10$ Hundreds. $10+1=11$, write 1 , carry 1 thousand.
Step 6. $2 \times 4=8$ Thousands. $8+1=9$. write 9 $3656+9,140=12,796$

Example 15

A store rents space in a building at a cost of Birr 20 per square meter. If the store is $\mathbf{7 0 0}$ square meter, how much is the rent? Solution

$$
20 \times 700
$$

$$
=14,000
$$

Therefore, the rent is Birr 14,000

ITOte tInat an estimate can indicate the size of a product. The following example discusses about working with approximate values for determining rough estimation when multiplying large numbers. Study the example carefully.

Example 16

$6127 \times 294 \approx 6000 \times 300=1,800,000$ (rounding 6127 to thousands and rounding 294 to hundreds respectively) $6127 \times 294=1,801,338 \approx 1,800,000$

Exercise 1.F

1. Multiply
a. $\quad 14$
$\times 2$
d. 168
$\begin{array}{r}5 \\ \hline\end{array}$
g. 804

b. 23
$\begin{array}{r}\times \quad 3 \\ \hline\end{array}$
\qquad
e. 63
$\times 14$
h. $204 \times 32=$

i. $743 \times 25=\square$
c.
36
$\begin{array}{r}7 \\ \times \quad \\ \hline\end{array}$
f. 571
$\begin{array}{r}\times 28 \\ \hline\end{array}$
j. $\quad 250 \times 12 \times 6=$ \square
k. $304 \times 31 \times 8=$

2. Estimate the product
a. 2112×198
b. 3104×395
3. Fatuma bought 3 baskets of Mangoes. There were 25 Mangoes in each basket. How many Mangoes did she have altogether?
4. A school-week has 5 days. How many school-days are there in 42 weeks?
5. A Scientific dictionary has 1,236 pages. How many pages would 24 such dictionaries have?
6. Each day a man sells 3,762 copies of a news paper. How many copies can the man sell in two months?
7. A factory produced 483 motor bikes in a year. If the profit on one bike is Birr 5,830 , how much profit did the factory make during the year?

1.2.3 Division of Whole Numbers

Look at the following divisions
(i) $6 \div 2=3$, remainder $=0$
(ii) $8 \div 3=2$, remainder $=2$
(iii) $9 \div 3=3$, remainder $=0$
(iv) $6 \div 8=$? here quotient is not a whole number.

In case of (i) and (iii), you can see that remainder is 0 , i.e., one whole number completely divides another whole number and the result is a whole number.

In case of (ii) and (iv) when one whole number divides another whole number, the result is not a whole number.

Activity 1.9

Determine the quotient and remainder
a. $12 \div 3$
b. $13 \div 4$
c. $18 \div 2$
d. $16 \div 5$

Study the examples given below on division carefully.

Example 17

A box contains 56 shirt buttons. If a shirt needs 7 buttons, how many shirts can be made up from the box?
Solution: $56 \div 7=8$ because $7 \times 8=56$ 8 shirts can be made up from the box.

Example 18

a. $24 \div 8=3$ because $8 \times 3=24$
b. $60 \div 5=12$ because $5 \times 12=60$
c. $\mathbf{6 0 0 0} \div \mathbf{3}=\mathbf{2 0 0 0}$ because $3 \times 2000=\mathbf{6 0 0 0}$ you may also use the long division to divide numbers.

Example 19

1 WHOLE NUMBERS AND THE FOUR OPERATIONS
Do Jour memnemiberp

- In any division

Dividend $=($ quotient $)($ divisor $)+$ remainder

- $0 \div \mathbf{a}=0$ if \mathbf{a} is a non-zero whole number.
- $\mathbf{a} \div 1=\mathbf{a}$ for any whole number a.
- Division is not commutative as well as associative (Why?)

Example 20

66	1 thousand $\div 15$? I can't.
151000	10 hundreds $\div 15$? I can't.
90	100 tens $\div 15$ is 6 tens.
100	Write 6 in the quotient's
90	Tens column. $15 \times 6=90$.
10	Write 90 under the 100

Write 6 in the quotient's units column. $15 \times 6=90$. Write 90 under the 100.
$100-90=10$
The quotient is 66. The remainder is 10

Example 21

Divide 1,801,340 by 294	6127
	294 1,801, 340
Check that	1764
$1,801,340=6127 \times 294+2$	373
	294
	794
	588
	2060
	2058
	2

Exercise 1.G

1. Divide and check by multiplying. Write the quotient and remainder in each case.
a. $197 \div 6$
b. $216 \div 5$
c. $639 \div 7$
d. $876 \div 9$
e. $908 \div 15$
f. $800 \div 27$
g. $43,567 \div 372$
h. $67,890 \div 124$
i. $278,056 \div 6072$
2. Complete

$\mathrm{a} \div \mathrm{b}=3$	a	18	27	36		102		9000
	b	6			20		100	

3. How many weeks are there in 5887 days?
4. How many days are there in 360 hours?
5. There are 2400 eggs that are to be shared equally in to 96 groups. How many eggs must each group get?

Figure 1.14
6. Three hundred eighty children share 8120 oranges. How many oranges will each child get? How many oranges are left over?
7. Find the number which when divided by 36 gives 352 as the quotient and 27 as the remainder.

1.2.4 Problems Containing Several Operations

A numerical expression is made up of numbers and operations. When simplifying a numerical expression, rules must be followed so that everyone gets the same answer.

Activity 1.10

Use two or more operations with these digits to make totals.
1

3

a. Total $=15$
b. Use two or more operations and the numbers from 1 to 9 to make total $=25$

Definition 1.1: A numerical expression is made up of numbers and operations. When simplifying a numerical expression, rules must be followed so that everyone gets the same answer.

From your previous mathematics lessons, observe that we use the four operations (,,$+- \times, \div$) in this way:

Solve what is in the bracket first, followed by 'of', then division, multiplication, addition and subtraction (BODMAS).

Group work 1.6

A student simplified $8 \times(9+13)$ as follows:
$8 \times(9+13)=8 \times 9+13$

$$
=72+13
$$

$$
=85
$$

What is the student's error?

$$
\begin{aligned}
& 15=(2+3) \times 3 \text { using }+ \text { and } \times \\
& 15=3 \times(7-4)+6 \text { using }+ \text {, }- \text { and } \times \\
& 15=(6 \div 3) \times(5+3)-1 \text { using }+,-, \times \text { and } \div \\
& 15=(8 \div 4) \times(6+2)-1 \text { using }+,-, \times \text { and } \div
\end{aligned}
$$

Example 22

Evaluate

a) $\frac{9+1 \times 6}{(1+4) \times 3}+5$
b) $\frac{43 \times 2 \times 3-33}{25 \times 3}$
c) $\frac{(6+100)-25}{3 \times 3}$
d) $2 \times 9 \div 3-1$

Solution:

$$
\begin{aligned}
& \begin{aligned}
\text { a) } \frac{9+1 \times 6}{(1+4) \times 3}+5=\frac{9+6}{5 \times 3}+5 & \text { c) } \frac{(6+100)-25}{3 \times 3}
\end{aligned}=\frac{106-25}{9} \\
&=\frac{15}{15}+5=1+5=6=\frac{81}{9}=9 \\
& \text { b) } \frac{43 \times 2 \times 3-33}{25 \times 3}=\frac{258-33}{75} \text { d) } 2 \times 9 \div 3-1=18 \div 3-1 \\
& \text { } \frac{9-1}{}=5
\end{aligned}
$$

Exercise 1. 포

1. Identify whether each of the following statements is true or false.
a. $4 \times(20-10)=(7 \times 5)+5$
b. $(27 \div 9)+9>27 \div(3+6)$
c. $(20 \div 2) \div 2<20-(18 \div 3)$
d. $(3 \times 4)+(3 \times 5)<(4 \times 3)+(5 \times 3)$
e. $(32 \div 4)+(36 \div 4)=(4 \times 2)+(3 \times 3)$
f. $(4 \times 7)-(20-10)>(7 \times 4)-(10-5)$
g. $(25 \div 5)+10>(30 \div 6)+15$
h. $(36 \div 2)-15=(30 \div 2)-12$
i. $(5 \times 4)+(6 \times 4)<(6 \times 3)+(7 \times 3)$
j. $\quad(18 \div 3) \times(30 \div 5)=(6 \times 6) \div(3 \times 2)$

2. Calculate the value of the following. The first one is done for you
a. $324+(512-473) \div 3$

$$
\begin{array}{lr}
=324+39 \div 3 \text { because } 512-473=39 \\
=324+13 \\
=337
\end{array}
$$

b. $285+(483-387) \div 4$
c. $(5000-800) \div 70+23$
d. $16 \times(24 \div 4)+10$
e. $(5 \times 4+4) \div(4 \times 4-8)$
f. $(15 \times 2) \div(14+1)$
g. $100-(12 \div 4+2)$

1.2.5 Multiples and Divisors of Whole Numbers

Activity 1.11

1. Write each number as a product of two whole numbers in as many ways as possible
(a) 6
(b) 16
(c) 17
(d) 36
2. Amare bikes every third day and walks every other day. On Meskerem 5, Amare biked and walked. When will he do both again?

The divisors (factors) of a number are all those numbers which will divide into that number with no remainder.

Example 23

a. 24 can be divided by $24,12,8,6,4,3,2,1$. So the divisors (factors) of 24 are $24,12,8,6,4,3,2$ and 1.
b. $1,2,3,5,6,10,15$ and 30 are divisors of 30 .

The multiples of a number are found by multiplying the number by $0,1,2,3,4,---$

Example 24

Some of the multiples of 6 are:
$6 \times 0=0,6 \times 1=6, \quad 6 \times 2=12, \quad 6 \times 3=18 \quad 6 \times 4=24$
$0,6,12,18$ and 24 are multiples of 6 .
What are some other multiples of 6 ?

Exercise 1.I

1. List all multiples of 5 less than 62.
2. List all multiples of 7 between 20 and 60 .
3. What are multiples of 8 ?
4. Write down divisors of 32 ?
5. Write down common divisors of 18 and 32 .

1.2.6 Power of Whole Numbers

Activity 1.12

Write as in the first example shown below
a) $2 \times 2 \times 2=2^{3}$
b) $3 \times 3 \times 3 \times 3=$
c) $4 \times 4 \times 4 \times 4 \times 4=$

When we write, $2 \times 2 \times 2 \times 2 \times 2$ as 2^{5}, read as two raised to power five or simply two raised to five. We know $2^{5}=32$ because $2 \times 2 \times 2 \times 2 \times 2=32$. Here 2 is called the base and 5 is called the exponent.

Example 25

a. $3^{4}=3 \times 3 \times 3 \times 3=81$
b. $5^{3}=5 \times 5 \times 5=125$
5^{3} may be read as five cubed
c. $4^{2}=4 \times 4=16$
4^{2} may be read as four squared

Study the following example:
a. We may write $2^{3} \times 2^{4}$ as 2^{3+4} or 2^{7} because $2^{3} \times 2^{4}$

$$
=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2=2^{7}
$$

b. $\frac{3^{6}}{3^{4}}$ may be written as 3^{6-4} or 3^{2} because

$$
\begin{aligned}
\frac{3^{6}}{3^{4}} & =\frac{3 \times 3 \times 3 \times 3 \times 3 \times 3}{3 \times 3 \times 3 \times 3} \\
& =\frac{3 \times 3 \times 3 \times 3}{3 \times 3 \times 3 \times 3} \times 3 \times 3=3^{2}=9
\end{aligned}
$$

Group work 1.7
Which numerical expression simplifies to 77?
(a) $3^{2} \times(4+5)$
(b) $7+4^{3}+10$
(c) $3 \times 5^{2}+2$
(d) $10^{2}-4 \times 5+1$

Irote: When you evaluate a numerical expression, which involves power of whole numbers, you need to follow the following rules:

Order of operations:

1. Do all operations within grouping symbols first; start with the inner most grouping symbols.
2. Do all powers before other operations.
3. Multiply and divide in order from left to right.
4. Add and subtract in order from left to right.

Example 27

Perform the indicated operations $(14+16) \div 5 \times 4+\left(4^{3}-4\right)$

Solution:

$(14+16) \div 5 \times 4+\left(4^{3}-4\right)$ here $14+16=30,64-4=60$ and $30 \div 5=6$
$=30 \div 5 \times 4+(64-4)$
$=6 \times 4+60$
$=24+60=84$

Exercise 1.J

1. Write the following numbers in power form. The first one is done for you.
a. $64=2 \times 2 \times 2 \times 2 \times 2 \times 2=2^{6}$
b. $27=$ \qquad $=$

c. $32=$ \qquad $=$ \qquad
d. $125=$ \qquad $=$ \qquad
e. $1000=$ \qquad $=$

2. Find the value of x, if
a. $x^{3}=8$ (Example (a) if $x^{3}=8$, then $x^{3}=8=2 \times 2 \times 2=2^{3}$.

Therefore $x=2$).
b. $\mathrm{x}^{3}=27$
c. $\mathrm{x}^{3}=125$
d. $\mathrm{x}^{3}=1000$
3. Complete the table

Number	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 6}$	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{6 4}$	$\mathbf{8 1}$
$\mathbf{a}^{\mathbf{n}}$	2^{3}						
Exponent	3		4	2		3	
Base	2	3			2	\cap	3

4. Compare using $>,<$ or $=$
a. 2^{3}
3^{2}
c. 2^{5} 5^{2}
b. 4^{3}
3^{4}
d. 2^{10} 10^{2}
5. Complete

Number	Product of Sevens	Number of Sevens	Number using exponents
7	7		1
49	7×7		7
	$7 \times 7 \times 7$		
2,401			
	$7 \times 7 \times 7 \times 7 \times 7 \times 7$		7
$5,764,801$			

6. Evaluate
a) $\frac{36}{3^{2}-3}$
b) $\left(5^{2}+3\right) \div 7$
c) $(20+30) \div 5 \times 2+\left(2^{4}-1\right)$

UNIT SUMMARY

Important facts you should know:

- One Million $(1,000,000)$ is a seven digit number.
- Any whole number \mathbf{n} different from zero has a predecessor "n-1" and a successor "n + 1".
- Place value chart

Millions	Hundred thousands	Ten thousands	Thousands	Hundreds	Tens	Ones
1,000000	100,000	10,000	1,000	100	10	1

$8,574,629=(8 \times 1,000,000)+(5 \times 100,000)+(7 \times 10,000)$
$+(4 \times 1,000)+(6 \times 100)+(2 \times 10)+9$

- Even numbers end in $\mathbf{0 , 2 , 4 , 6}$ and 8 and odd numbers end in $1,3,5,7$ and 9 .
- $\mathrm{x}+\mathbf{0}=\mathbf{0}+\mathrm{x}=\mathrm{x}$ for a whole number x .
- $\mathbf{a} \times \mathbf{b}=\boldsymbol{b} \times \mathbf{a}$ for whole numbers \mathbf{a} and b.
- $(\mathbf{a} \times b) \times \mathbf{c}=\mathbf{a} \times(b \times c)$ for whole numbers a, b and c.
- In any division Dividend $=$ (quotient) (divisor) + remainder.
- We use the four operations ($+,-, x, \div$) in this way: BODMAS.
- The divisors (factors) of a number are all those numbers which will divide into the number with no remainder.
- When we write, $2 \times 2 \times 2 \times 2 \times 2$ as 2^{5} raised to five), $2^{5}=32$. (2 is called the base and 5 is called the exponent).
- We may write $2^{4} \times 2^{5}$ as 2^{4+5} or 2^{9}.

REVIEW EXERCISE

1. Write these numbers in words.
a. 4,350,672 \qquad
b. $7,582,091$ \qquad
c. $10,093,385$ \qquad
d. $16,724,109$ \qquad
e. $20,000,000$ \qquad
f. $83,000,400$ \qquad
2. Write these numbers in figures.
a. Seven million, ten thousand eighty six.
b. Twelve million, seven hundred thousand, one hundred three.
c. Fourteen million, sixteen.
d. Thirty seven million, six hundred twenty five thousand, forty nine.
3. a. What is the predecessor of $5,907,183$?
b. What is the successor of $7,068,439$?
c. What is the predecessor of $8,907,056$?
d. What is the successor of $12,000,400$?
4. Compare the numbers using $>\ll$ or $=$
a. $3,586,275$ \square $3,658,752$
b. $10,706,009 \square 10,099,991$
c. $13,218,780 \quad-13,900,000$
d. $21,007,700$ $21,008,000$
e. $38,704,100$
$\square 38,407,100$
5. Write the place value of 8 in the number $13,826,004$.
6. Write the following numbers in expanded form.
a. $21,706,489$
c. $91,360,072$
b. $34,069,705$
7. Write the whole number which is represented by the following expanded form.
a. $(4 \times 1,000,000)+(7 \times 10,000)+(5 \times 1,000)+(9 \times 10)+1$
b. $(7 \times 1,000,000)+(9 \times 100,000)+(6 \times 100)+(8 \times 10)$
c. $(9 \times 1,000,000)+(8 \times 100)+(6 \times 10)+3$
d. $(6 \times 10,000,000)+(7 \times 1,000,000)+(7 \times 1000)+9$
8. Count in millions and list the numbers.
a. From 1,300,200 to 8,300,200
b. From $13,407,500$ to $20,407,500$
c. From $30,566,409$ to $39,566,409$
9. a. List even numbers between $30,708,969$ and $30,708,983$. b. List odd numbers between $42,561,842$ and $42,561,852$.
10. a. What is the sum of three even numbers? (Even, Odd)
b. What is the sum of four odd numbers? (Even, Odd)
c. What is the sum of five odd numbers? (Even, Odd)
11. Add
a. $8,346,271$
b. $13,097,805$
$+4,077,956$
$+7,903,769$
c) $24,681,967$
$+18,098,123$
12. Subtract
a. $18,076,04$
$-6,953,85$
13. Multiply
a. 3468
b. 7086
c) 9431
$\begin{array}{r} \\ \times \quad 94 \\ \hline\end{array}$
$\begin{array}{r} \\ \times \quad 29 \\ \hline\end{array}$
b. $21,606,909$
$-8,079,098$
c) $32,168,432$
$-9,969,909$
14. Divide
a. $576,262 \div 73$
b. $3,945,305 \div 845$
c. $3,008,916 \div 6042$
d. $6,352,731 \div 927$
15. Perform the indicated operations
a. $4257+(6028-5993) \div 5$
b. $250 \times(300 \div 6)+150$
c. $(420 \times 6+4) \div(16 \times 2-28)$
d. $4^{3}-2 \times 5+(8 \div 2)$
e. $[(4+12 \div 4)-2]^{3}$
16. Write in power form.
a. 243
b. 128
c. 2401
d. 625
17. Zeberga bought two tickets for the instant (ottery and still had Birr 85,234 in the bank. He dreamt that he had a winning ticket worth Birr 750,000 and another worth Birr 480,000. How much money would Zeberga have if his dream was true?
18. Ato Wondimu was the head master of a primary school in Holeta. He had Birr 854,550 in school fund. He paid his teachers' salaries and then had a total of Birr 45,680 left. How much did he have to pay the teachers?
19. In a school hall there are 1432 benches. Each bench can hold 16 children. How many children can sit on the benches in the hall?
20. Ato Dinkessa and Woizero Fatuma run a library. They have 32,448 books altogether. They ask a class of 52 students to carry the books to a new room. If each students carries the same number of books, how many will each of them carry?
