UNIT

 GEDMETRIC FIGURES AND
 MEASUREMENT

Unit outcomes:

After completing this unit, you should be able to:
$>$ identify, construct and describe properties of quadrilaterals such as trapezium and parallelogram.
> identify the difference between convex and concave polygons.
$>$ find the sum of the measures of the interior angles of a convex polygon.
$>$ calculate perimeters and areas of triangles and trapeziums.

Introduction

In this unit you will extend your knowelede of gemotric figures. You will exercise how to construct quadrilaterals and describe their properties using your construction. You will also learn more about triangles. Moreover you will be able to calculate the areas and perimeter of Plane figures including solid figures like surface areas and volumes of prisms and circular cylinders.

5.1 Quadrilaterals, Polygons and Circles

The purpose of this section is, to enable you to construct and to let you know the basic facts about quadrilaterals, polygons and circles.

5.1.1 Quadrilateral

Growp Work 5.1

Discuss the following key terms with friends /Groups/.

1. List the three basic terms in plane geometry.
2. Define the following key terms and explain in your own word:
a. line segment
b. ray
c. angles
d. adjacent angles
e. vertically opposite angles
3. Look at Figure 5.1 below
a. Name all its vertices.
b. Name all its interiaor angles.
c. Name all its sides.
d. Name all pairs of opposite sides.
e. Shows the number of all possible diagonals that can be drawn from all its vertices.
f. angle bisectors
g. complementary angles

Figure 5.1. Quadrilateral
$?$
Have you any idea on how to name Figure 5.1 above?

Note: Therefore, the Figure given above (Figure 5.1) is a quadrilateral and this quadrilateral is denoted by using and naming all the letters representing its vertices either in clockwise or counterclockwise directions. Thus, we can name this quadrilateral as quadrilateral ABCD or BCDA or CDAB or DABC or DCBA or remember that it can not be named as ACBD or BDAC.

Definition 5.1: A quadrilateral is a four-sided geometric figure bounded by line segments.

Figure 5.2. Quadrilateral DEFG

Note: i) The line segments $\overline{\mathrm{DE}}, \overline{\mathrm{EF}}, \overline{\mathrm{FG}}$, and $\overline{\mathrm{GD}}$ are called sides of the quadrilateral DEFG.
ii) The points at which the sides are connected are vertices of the quadrilateral. In Figure 5.2 the points D, E, F and G are vertices of the quadrilateral.
iii) Adjacent sides of a quadrilateral are sides that have a common end point. In Figure 5.2 the sides $\overline{\mathrm{DE}}$ and $\overline{\mathrm{EF}}$ are adjacent sides since they have met at vertex E .
iv) Opposite sides are sides that have no common point, and $\overline{\mathrm{DG}}$ and $\overline{\mathrm{EF}}, \overline{\mathrm{DE}}$ and $\overline{\mathrm{GF}}$ are opposite sides; because they have no common vertex.
v) A diagonal is a line segment that connects two opposite vertices. In Figure $5.2 \overline{\mathrm{DF}}$ and $\overline{\mathrm{EG}}$ are diagonals of the quadrilateral.
vi) The interior angles of a quadrilateral are the angles formed by adjacent sides of the quadrilateral and lying with in the quadrilateral.

In Figure 5.2, the quadrilateral contains four interior angles $\angle \mathrm{D}, \angle \mathrm{E}, \angle \mathrm{F}$ and $\angle \mathrm{G}$ or $\widehat{\mathbf{D}}, \widehat{\mathbf{E}}, \widehat{\mathrm{F}}$ and $\widehat{\mathbf{G}}$.

5.1.1.2 Construction and Properties of Trapezium

Activity 5.1

Discuss with your teachers before starting the lesson.

1. This shape is a quadrilateral. Can you name the shape of this quadrilateral?
2. Is there any thing that you can say about the pairs of its opposite sides.

Figure 5.3.
3. Construct a quadrilateral $A B C D$ with $A B \| C D$ and $A B=6 \mathrm{~cm}, B C=3 \mathrm{~cm} m(\angle A)=50^{\circ}$ and $\mathrm{m}(\angle \mathrm{B})=80^{\circ}$.

In numbers 4-6 construct a trapezium ABCD in which AB is parallel to DC .
4. If $\mathrm{AB}=8 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CD}=3 \mathrm{~cm}$ and $\mathrm{DA}=3.5 \mathrm{~cm}$, then find measure $\angle \mathrm{A}$.
5. If $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=6 \mathrm{~cm}, \mathrm{CD}=2 \mathrm{~cm}$ and $\mathrm{DA}=4 \mathrm{~cm}$, then find neasure $\angle \mathrm{A}$.
6. If $\mathrm{AB}=6.5 \mathrm{~cm}, \mathrm{CD}=3 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm}$ and $\mathrm{BD}=5 \mathrm{~cm}$, then describe shortly your method.
7. Construct the parallelogram $A B C D$, given that $A B=7 \mathrm{~cm}, A C=10 \mathrm{~cm}$ and $B D=8 \mathrm{~cm}$. What is the measure of $\overline{\mathrm{BC}}$.

To perform geometric constructions; you need a straight edge and compass. Using these basic tools; you can construct a geometric figure with sufficient accuracy.
\checkmark Use of a straight edge: A straight edge marked or unmarked, ruler is used to construct (draw) a line or a line segment through two given points.
\checkmark Use of compasses: is used to construct (draw) circles or arcs.

Note: To draw a figure you may use any convenient instrument such as ruler, protractor etc.

(?)Is there a difference in meaning between the word "drawing" and construction?

Definition 5.2: A trapezium is a special type of a quadrilateral in which exactly one pair of opposite sides are parallel.

- The parallel sides are called the bases of the trapezium.
- The distance between the bases is known as the height (or altitude) of the trapezium.

Figure 5.4 Trapezium

- In Figure 5.4 quadrilateral ABCD is a trapezium with bases $\overline{\mathrm{AB}}$ and $\overline{\mathrm{DC}}$. $\overline{\mathrm{AB}} \| \overline{\mathrm{DC}}$ and the distance between $\overline{\mathrm{AB}}$ and $\overline{\mathrm{DC}}$ is the height of trapezium ABCD.
In Figure $5.4 \overline{\mathrm{AD}}$ and $\overline{\mathrm{BC}}$ are the non - parallel sides of the trapezium called the legs of the trapezium.

Construction I

Construct a trapezium ABCD using ruler, protractor, pair of compasses and the given information below.

Given: $\mathrm{AB} \| \mathrm{CD}, \mathrm{AB}=8 \mathrm{~cm}, \mathrm{BC}=5 \mathrm{~cm}, \mathrm{~m}(\angle \mathrm{~A})=60^{\circ}$ and $\mathrm{m}(\angle \mathrm{B})=85^{\circ}$.
Required: To construct trapezium ABCD.

Solution:

Step i: Draw a line segment $A B=8 \mathrm{~cm}$.

Step ii: Construct $\mathrm{m}(\angle \mathrm{A})$ and $\mathrm{m}(\angle \mathrm{B})$ with the given measures.

Step iii: Mark point C on the side of $\angle \mathrm{B}$ such that $\mathrm{BC}=5 \mathrm{~cm}$.

Step iv: Draw a line through C and parallel to $\overline{\mathrm{AB}}$ so that it intersects the side of $\angle A$ at point D.
Therefore, ABCD is the required trapezium.

5.1.1.3 Construction and Properties of Parallelogram

Definition 5.3: A paralleloagram is a quadrilateral in which each sides is parallel to the side opposite to it.

Figure 5.5 parallelogram
In Figure $5.5 \overline{\mathrm{AB}} \| \overline{\mathrm{DC}}$ and $\overline{\mathrm{AD}} \| \overline{\mathrm{BC}}$, thus, ABCD is a parallelogram.

Construction II

Construct parallelogram ABCD using ruler, protractor, pair of compasses and information given below.
Given: $\overline{\mathrm{AB}} \| \overline{\mathrm{CD}}, \mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}$ and $\mathrm{m}(\angle \mathrm{A})=80^{\circ}$.
Required: To Construct parallelogram ABCD.

Solution:

Step i: Draw a line segment $A B=6 \mathrm{~cm}$.

Step ii: Construct $\angle \mathrm{A}$ and $\angle \mathrm{B}$ so that $\mathrm{m}(\angle \mathrm{A})=80^{\circ}$ and $\mathrm{m}(\angle \mathrm{B})=100^{\circ}$.

Step iii: Mark point C on side of $\angle B$ such that $B C=4 \mathrm{~cm}$.

Step iv: Draw a line through C and parallel to $\overline{\mathrm{AB}}$ so that it meets the side of $\angle \mathrm{A}$ at point D .

Therefore , ABCD is the required parallelogram.

Properties of parallelogram

i. Opposite sides of a parallelogram are congruent. In Figure 5.5 ABCD is a parallelogram, then $A B=C D$ and $A D=B C$.
ii. Opposite sides of a parallelogram are parallel. In Figure 5.5 ABCD is a parallelogram then $\overline{\mathrm{AB}} \| \overline{\mathrm{CD}}$ and $\overline{\mathrm{AD}} \| \overline{\mathrm{BC}}$.
iii. Opposite angles of a parallelogram are congruent. In Figure 5.5 ABCD is a parallelogram then $\mathrm{m}(\angle \mathrm{A})=\mathrm{m}(\angle \mathrm{C})$ and $\mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{D})$.
iv. Consecutive angles of a parallelogram are supplementary. In Figure 5.5 ABCD is a parallelogram then $\mathrm{m}(\angle \mathrm{A})+\mathrm{m}(\angle \mathrm{B})=180^{\circ}$, $\mathrm{m}(\angle \mathrm{B})+\mathrm{m}(\angle \mathrm{C})=180^{\circ}$ etc.
v. The diagonals of a parallelogram bisect each other. In Figure 5.5 ABCD is a parallelogram and the diagonals $\overline{\mathrm{AC}}$ and $\overline{\mathrm{BD}}$ intersect at 0 then $\mathrm{AO}=\mathrm{CO}$ and $\mathrm{BO}=\mathrm{DO}$.

Note: Bisect means "divides exactly into two equal parts".

Example 1. Find the values of x and y in parallelogram ABCD. Then find $A E, E C, B E$, and ED.

Solution:

Figure 5.6 parallelogram

AE $=C E \ldots .$. The diagonals of a parallelogram bisect each other.
$3 y-7=2 x \ldots$. Equation 1
$\mathrm{DE}=\mathrm{BE} \ldots$. The diagonals of a parallelogram bisect each other.
$x+1=y \ldots .$. Equation 2
$3(x+1)-7=2 x \ldots .$. Substitute equation 2 in equation 1
$3 x+3-7=2 x \ldots \ldots$. Remove brackets
$3 x-4=2 x \ldots \ldots \ldots$. Simplifying
$3 x-4+4=2 x+4 \ldots \ldots$ Adding 4 from both sides
$3 x=2 x+4 \ldots \ldots$ Simplifying
$3 x-2 x=2 x-2 x+4 \ldots$. Subtracting $2 x$ from both sides $x=4$ units.
when $x=4$

$$
\begin{aligned}
\text { thus } y & =x+1 \\
y & =4+1 \\
y & =5 \text { units. }
\end{aligned}
$$

Therefore, $\mathrm{AE}=3 \mathrm{y}-7$

$$
\begin{aligned}
& =3(5)-7 \\
& =15-7 \\
& =8 \text { units. }
\end{aligned}
$$

Therefore, EC $=2 \mathrm{x}$

$$
\begin{aligned}
& =2(4) \\
& =8 \text { units. }
\end{aligned}
$$

Therefore, $\mathrm{BE}=\mathrm{x}+1$

$$
\begin{aligned}
& =4+1 \\
& =5 \text { units. }
\end{aligned}
$$

Therefore, $\mathrm{DE}=\mathrm{y}$

$$
=5
$$

Hence $\mathrm{AE}=\mathrm{EC}$ and $\mathrm{BE}=\mathrm{DE}=5$ units.

Example 2. In Figure 5.7 to the

 right ABCD is a parallelogram.Find the measure of $\angle \mathrm{A}, \angle \mathrm{B}$ and $\angle \mathrm{C}$.

Solution:

Figure 5.7 parallelogram
$\mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{D})=110^{\circ}$ since measures of the opposite angles of a parallelogram are equals.
$\mathrm{m}(\angle \mathrm{A})+\mathrm{m}(\angle \mathrm{D})=180^{\circ} \ldots \ldots$ Consecutive angles of a parallelogram are suppalementary.

$$
\mathrm{m}(\angle \mathrm{~A})+110^{\circ}=180^{\circ} \ldots . . \text { Substitution }
$$

$\mathrm{m}(\angle \mathrm{A})+110^{\circ}-110^{\circ}=180^{\circ}-110^{\circ} \ldots$. Subtracting 110° from both sides

$$
\begin{aligned}
& \mathrm{m}(\angle \mathrm{~A})=70^{\circ} \ldots . \text { Simplifying } \\
& \mathrm{m}(\angle \mathrm{~A})=\mathrm{m}(\angle \mathrm{c}) \ldots . . \text { Opposite angles of a parallelogram are }
\end{aligned}
$$

congruent (have equal measure).

$$
m(\angle c)=70^{\circ}
$$

Exercise 5A

1. In Figure 5.8 on the right, shows a parallelogram ABCD is given. If the diagonals $\overline{\mathrm{AC}}$ and $\overline{\mathrm{BD}}$ intersect at O and $\mathrm{AO}=4 \mathrm{~cm}$, find the length of $\overline{\mathrm{AC}}$.
2. In Figure 5.9 below

ABCD is a parallelogram with $m(\angle A B C)=43^{\circ}$. A

Figure 5.8 parallelogram line through A meets $\overline{\mathrm{CD}}$ at E and $\mathrm{m}(\angle \mathrm{AED})=68^{\circ}$.
Find
a. $\mathrm{m}(\angle \mathrm{ADE})$
b. $\mathrm{m}(\angle \mathrm{DAE})$
c. $\mathrm{m}(\angle \mathrm{BCD})$

Figure 5.9 parallelogram
3. In Figure 5.10 find the unknown marked agnles.

Figure 5.10

In exercises, 4 and 5, find the unknown or marked angles.
4.

5.

Figure 5.12

Challenge Problem

In exercises 6 and7, find the unknown or marked angles.

Figure 5.13

Figure 5.14

5.1.1.4 Construction and Properties of Special Parallelogram

A. Rectangle

Activity 5.2

Discuss with your calssmate

1. Construct a rectangle $P Q R S$ with $P Q=4 \mathrm{~cm}, \mathrm{QR}=3 \mathrm{~cm}$ and $\mathrm{m}(\angle \mathrm{P})=90^{\circ}$.
2. Name the following
a. The green side of a rectngle
b. The blue side of a rectangle
c. The red diagonal of a rectangle

Figure 5.15 Rectangle
3. a. Draw accurately rectangle $A B C D$ where $A B=4 \mathrm{~cm}, B C=3 \mathrm{~cm}$.
b. Join the diagonal $\overline{\mathrm{BD}}$ and give its length.
4. Construct the rectangle $A B C D$, given thath $A B=4 \mathrm{~cm}$ and $A C=6 \mathrm{~cm}$.
5. Construct the square $A B C D$, given that $A C=5 \mathrm{~cm}$. What is the measure of $A B$.
6. Construct the rhombus $A B C D$ given thath $B D=7 \mathrm{~cm}, \angle B=40^{\circ}$. What is the measure of AC .

Construction III

Construct a rectangle PQRS by using ruler, protractor, pair of compasses and the given information below.
Given: $\overline{\mathrm{PQ}} \| \overline{\mathrm{RS}}, \mathrm{PQ}=6 \mathrm{~cm}, \mathrm{QR}=7 \mathrm{~cm}$ and $\mathrm{m}(\angle \mathrm{P})=90^{\circ}$.
Required: To construct rectangle PQRS.

Solution:

Step i: Construct a line segment $\overline{\mathrm{PQ}}$ with length 6 cm .

Step ii: Construct $\mathrm{m}(\angle \mathrm{P})=90^{\circ}$ and

$$
\mathrm{m}(\angle \mathrm{Q})=90^{\circ}
$$

Step iii: Mark point R such that $\mathrm{QR}=7 \mathrm{~cm}$.

Step iv: Draw a line through R and parallel to $\overline{\mathrm{PQ}}$ so that it interects with a line through P and parallel to $\overline{\mathrm{QR}}$. Let S be the intersection point.

Therefore PQRS is the required rectangle.

> Definition 5.4: A rectangle is a parallelogram with all its angles are right angles.

Figure 5.16 Rectangle

Properties of a rectangle

i. Arectangle has all properties of a parallelogram.

5 Geometric Figures and Measurvement

ii. All angles of a rectangle are right angles.
iii. The diagonals of a rectangle are equal in length and bisect one another. That is, if ABCD is a rectangle then $\mathrm{AC}=\mathrm{BD}$.
iv. The consecutive angles of a rectangle are equal. That is, if ABCD is a rectangle, then $\mathrm{m}(\angle \mathrm{A})=\mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{D})=90^{\circ}$.

Note: A quadrilateral with congruent diagonals is not necessarily a rectangle.

Exercise 5B

1. In Figure 5.17 to the right ABCD is a rectangle. If $\mathrm{m}(\angle \mathrm{BDC})=54^{\circ}$, then find $\mathrm{m}(\angle \mathrm{ABD})$ and $\mathrm{m}(\angle \mathrm{CBD})$.

Figure 5.17 Rectangle
2. In rectangle ABCD the length of diagonal $\overline{\mathrm{AC}}$ is given by $(20 \mathrm{x}+12) \mathrm{cm}$ and the length of diagonal $\overline{B D}$ is given by $(14 x+24) \mathrm{cm}$. Find $A C$ and $B D$.
3. In Figure 5.18 to the right EFGH is a rectangle. If $\mathrm{m}(\angle \mathrm{HFG})=37^{\circ}$. what is the value of β.

Figure 5.18 Rectangle

Figure 5.19 Rectangle
5. Construct the rectangle EFGH with $\mathrm{EF}=6 \mathrm{~cm}$ FG $=3 \mathrm{~cm}$. Describe its construction.

B. Rhombus

Activity 5.3

First discuss for each step with your friends and ask your teacher.

1. Construct a rhombus $A B C D$ with $A B=4 \mathrm{~cm}$ and $\mathrm{m}(\angle A)=70^{\circ}$.
2. Give your own example similar to Activity 5.4 here on number 1 above and show for each step and arrive on the final conclusion.

Definition 5.5: A rhombus is a parallelogram in which two adjacent sides are congruent.

Diagonals

Figure 5.20 Rhombus

Properties of rhombus

i. All sides of a rhombus are equal (congruent).
ii. Opposite sides of a rhombus are parattel.
iii. Opposite angles of a rhombus are equal (congruent),
iv. The diagonal of a rhombus bisect each other at right angles.
v. The diagonal of a rhombus bisects the angles at the vertices.

Example 3. In Figure 5.21 to the right $A B C D$ is a rhombus if $\mathrm{AB}=12 \mathrm{~cm}$, then find DC.

Figure 5.21

Solution:

$$
\text { By propertiy (i) } \mathrm{AB}=\mathrm{DC}=12 \mathrm{~cm} \text {. }
$$

C. Squares

Activity 5.4

Discuss with your teacher in the class based on the above discussion.

1. Construct a square $A B C D$ with $A B=4 \mathrm{~cm}, \mathrm{~m}(\angle A)=90^{\circ}$.
2. Based on activity number 1 ask each student to give their final conclusion.

Definition 5.6: A square is a rectangle in which its two adjacent sides are congruent.

Figure 5.22 Square

Properties of Square

i. All the sides of a square are equal (Congruent),
ii. All the angles of a square are right angles.

That is $\mathrm{m}(\angle \mathrm{A})=\mathrm{m}(\angle \mathrm{B})=\mathrm{m}(\angle \mathrm{C})=\mathrm{m}(\angle \mathrm{D})=90^{\circ}$.
iii. Opposite sides of a square are parallel. That is $\overline{\mathrm{AB}} \| \overline{\mathrm{CD}}$ and $\overline{\mathrm{AD}} \| \overline{\mathrm{BC}}$.
iv. The diagonals of a square are equal (Congruent) and perpendicular bisectors of each other.
v . The diagonals of a square bisect the angles at the vertices.

Example 4. In Figure 5.23 to the right ABCD is a square. $\overline{\mathrm{CO}}$ intersects $\overline{\mathrm{DB}}$ at E . If the measure of $\angle \mathrm{DEC}=70^{\circ}$, then find the measûre of $\angle \mathrm{AOC}$.

Figure 5.23 square

Solution:

Since each angle of a square is bisected by a diagonal
$\mathrm{m}(\angle \mathrm{ABD})=\frac{1}{2}\left(90^{\circ}\right)=45^{\circ}$
$\mathrm{m}(\angle \mathrm{BEO})=\mathrm{m}(\angle \mathrm{DEC})=70^{\circ} \ldots \ldots \ldots .$. Vertical opposite angle.
Thus $\mathrm{m}(\angle \mathrm{BOE})+\mathrm{m}(\angle \mathrm{OEB})+\mathrm{m}(\angle \mathrm{EBO})=180^{\circ}$ why?

$$
\begin{aligned}
& \mathrm{m}(\angle \mathrm{BOE})+70^{\circ}+45^{\circ}=180^{\circ} \ldots . . \text { Substitution } \\
& \mathrm{m}(\angle \mathrm{BOE})=180^{\circ}-115^{\circ} \\
& \mathrm{m}(\angle \mathrm{BOE})=65^{\circ}
\end{aligned}
$$

Now $\mathrm{m}(\angle \mathrm{AOC})+\mathrm{m}(\angle \mathrm{BOC})=180^{\circ} \ldots \ldots .$. Supplementary angles.

$$
\begin{gathered}
\mathrm{m}(\angle \mathrm{AOC})+65^{\circ}=180^{\circ} \ldots \ldots . \text { Substitution } \\
\mathrm{m}(\angle \mathrm{AOC})=115^{\circ}
\end{gathered}
$$

Exercise 5C

1. Find the length of the side of a rhombus whose diagonals are of length 6 cm and 8 cm
2. In Figure 5.24 to the right ABCD is a rhombus. Show that $\overline{\mathrm{AC}}$ is the bisector of $\angle \mathrm{BAD}$.
3. In Figure 5.25 to the right shows ABCD which is a rhombus; with $m(\angle B A D)=140^{\circ}$. Find $\mathrm{m}(\angle \mathrm{ABD})$ and $\mathrm{m}(\angle \mathrm{ADC})$.
4. In Figure 5.26 to the right, ABCD is asquare. Find the measure of $\angle A B D$.

Figure 5.24 Rhombus

Figure 5.25 Rhombus

Figure 5.26 square

5 Geometric figures and Mleasurement

5.1.1. Polygons

In this subunit you will see the different types of polygons, simple, convex and concave polygons. But most of our discussion will be on convex and concave polygons. Polygons are classified according to the number of sides they have.

Activity 5.5

1. This shape is not a polygon.

Explain why.

2. Identify the given shapes is a convex or a concave polygon.

(a)

(b)

(c)

(d)

Figure 5.27
3. The following pictures are made from polygons. Copy the tables below and fill the blank space correctly.

Figure 5.28

5 Qeometric figures and Measurement

For picture A			For picture B		
Description	Number of sides	Name of polygon	Description	Number of sides	Name of polygon
1. Neck 2. Head 3. T-shirt 4. Name bage 5. Skirt	-	-	-	1. Head 2. T-shirt 3. Name badge	-
6. Shoes					

Definition 5.7: Apolygoan is a simple closed plane figure formed by three or more line segments joined end to end.
The line segments forming the polygons are called sides and the common end point of any two sides is called Vertex (plural vertices) of the polygon. The vertices of a polygon are the points where two sides meet.
A. Convex and concave polygons

Definition 5.8: A convex polygon is a simple polygon in which all of its interior angles measures less than 180° each.

(a)

(b)

(c)

Figure 5.29 Examples of convex polygons

Definition 5.9: A concave polygon is a simple polygon which has at least one interior angle of measures greater than 180°.

Figure 5.30 Examples of concave polygons

Definition 5.10: A diagonal of aconvex polygon is a line segment whose end points are non-consecutive vertices of the polygan.

(a)

(b)

Figure 5.31 Shows the number of diagonals that can be drawn from one vertex.

Vertex of agiven polyon. In Figure 5.31 (a) $\overline{\mathrm{FD}}, \overline{\mathrm{FC}}$ and $\overline{\mathrm{FB}}$ are the diagonal of the polygon from vertex F only and in Figure 5.31 (b), $\overline{\mathrm{PR}}$ is the diagonal of the polygon from vertex P.A polygon is named by using the letters representing the vertices in clockwise or conunter clock wise direction.

Figure 5.32 Shows the number of all possible diagonals that can be drawn from all vertices of the polygon XYZWR and ABCDEF.

Activity 5.6

1. Look at the polygons in Figure 5.32 above and list down all the possible diagonals in
a. Polygon RXYZW.
b. Polygon ABCDEF .
2. Draw an octagon and list down all the diagonals that can be drawn from all vertices. (Name the vertices A, B, C, D, E, F, G, H).

Table 5.1. Number of sides of a polygon and respective number of diagonals,
$\left.\begin{array}{|c|c|c|}\hline \begin{array}{c}\text { Number of } \\ \text { sides }\end{array} & \begin{array}{c}\text { Number of diagonals } \\ \text { drawn from one vertex }\end{array} & \begin{array}{c}\text { Number of all possible } \\ \text { diagonals }\end{array} \\ \hline 3 & 0 & 0\end{array}\right]$

Example 5.: How many diagonals are there in a polygon of 40 sides?
Solution: Number of all possible diagonals $=\frac{n(n-3)}{2} \ldots .$. given formula

$$
\begin{aligned}
& =\frac{40(40-3)}{2} \\
& =\frac{40(37)}{2}
\end{aligned}
$$

$=740$ different diagonals.

5 Qeometric figures and Mleasurement

A. Classification of polygons

Polygons are classified according to the number of sides they have. In Table 5.2 below is a list of some common types of polygons and the number of sides of each polygon.

Table 5.2 Types of polygons

Exercise 5D

Solve each of the following word problems.

1. How many possible diagonals are there in a polygon of 80 sides.
2. What is the number of sides of a Dodecagon?
3. What is the number of sides of an Icosagon?
4. Look at Figure 5.33 to answer the following questions.
a. Name all vertices of the polygon.
b. Name the opposite side of $\overline{\mathrm{AB}}$.
c. Name all diagonals that can be drawn from vertex B.
d. How many interior angles does the polygon have?

Figure 5.33 polygon
e. Name the polygon.

5.1.2. Circles

Group Work 5.2

Solve each of the following word problems.

1. Use compasses to draw your own circles.
2. Draw acircle of radius 3 cm . In your circles draw and label.
a. a diameter
e. a semicircle
b. a radius
f. the circumference
c. a chord
d. an arc

Figure 5.34

Definition 5.11: A circle is the set of all points in a plane that are equidistant from a fixed point called the center of the circle.

Figure 5.35 Circle

Note: i. a circle is usually named by its center. In Figure 5.35 the circle can be named as circle 0 .
ii. a chord of a circle is a line segment whose end points are on the circle. In Figure 5.35 the line segment $\overline{\mathrm{AB}}$ and $\overline{\mathrm{PQ}}$ are chords of the circle.
iii. a diameter of a circle is any chord that passes through the center, and denoted by ' d '. It is the biggest chord of a circle. In Figure 5.35 the chord $\overline{\mathrm{AB}}$ is a diameter of the circle.
iv. a radius of a circle is a line segment that has the center as one end point and a point on the circle as the other end point, and denoted by ' r '. In Figure 5.35 the line sement $\overline{\mathrm{OA}}$ and $\overline{\mathrm{OB}}$ are radii of th circle, (radii is the prular from of radius).
v. circumfrence of a circle is the complete path around the circle.

From the above discussion $\mathrm{AB}=\mathrm{d}=$ a diameter and O is the centre of the circle.

$$
\text { i.e } \mathrm{AO}=\mathrm{OB}=\mathrm{r}=\text { radii. }
$$

Therefore, $\mathrm{AB}=\mathrm{AO}+\mathrm{OB} \ldots$. . The length of a segment equals the sum of the lengths of its parts that donot overlap.

$$
\begin{aligned}
& d=r+r \ldots \ldots . \text { Substitution } \\
& d=2 r \ldots \ldots . \text { Collect like terms }
\end{aligned}
$$

Hence, the diameter ' d ' of a circle is twice the radius r .
i.e. $d=2 r \quad$ or $\frac{d}{2}=r$

Definition 5.12: An arc is a part of the circumference.

The part of the circle determined by the line through points D and E is called an arc of the circle. In Figure 5.35 we have arc DCE and arc DZE,
Notation: Arc DCE and arc DZE is denoted by $\overparen{\text { DCE }}$ and $\overparen{\text { DZE respectively where }}$ D and E are end points of these arcs.

Exercise 5ε

Solve each of the following problems

1. In a circle of radius 3 cm ,
a. draw a chord of 3 cm .
b. draw a chord of 6 cm . what can you say about this chord?
c. can you draw a chord of 7 cm ?
2. If in the following Figure 5.36 below O is the center of the circle, then
a. \qquad , \qquad , \qquad and \qquad are radii of the circle.
b. \qquad and \qquad are diameter of the circle.
c. \qquad and \qquad are chord of the circle.
d. \qquad and \qquad a pair of parallel lines.

Figure 5.36

5.2. Theorems of Triangles

Group work 5.3

Solve each of the following word problems.

1. a. cut out a large triangle from scrape paper.
b. Draw round the triangle in your book.
c. Tear the three corners from your triangle made of the scrape paper.
d. stick the torn angles inside its out line. (keep the cut out corners and stick them in a straight line or 180°).

Figure 5.37
Finally what do you guess about the sum of the measures of interior angles of a triangle $A B C$.

5 Geometric figures and Measurement

Remember that: The following key terms are discussed in your grade six mathematics lessons.

Note: The angles on a straight line add up to 180°.
Example 6. Calculate the marked angles in given Figures 5.38 below.

Solution:

a. $60^{\circ}+\beta=180^{\circ} \ldots$. . Definition of straight angle
$=60^{\circ}-60^{\circ}+\beta=180^{\circ}-60^{\circ} \ldots$. Subtracting 60 from both sides $\beta=120^{\circ} \ldots \ldots$. Simplifying
b. $40^{\circ}+\theta+60^{\circ}=180^{\circ} \ldots$. Definition of straight angle

$$
\theta+100^{\circ}=180^{\circ}
$$

$\theta=100^{\circ}-100^{\circ}=180^{\circ}-100^{\circ} \ldots$. Subtracting 100 from both sides

$$
\theta=80^{\circ} \ldots . . \text { Simplifying }
$$

Theorem 5.1: If two parallel lines are cut by a transeversal line, then alternate interior angles are equal.

Figure 5.39

In Figure 5.39σ and β are alternate interior angles.
Theorem 5.2: If two parallel lines are cut by a transversal line then, interier angles on the same sides of the transeversal line are supplementary.

Figure 5.40

Theorem 5.3: If two parallel lines are cut by atransveral line, then corresponding angles are equal. In Figure 5.41 to the right if letters a, b, c, $\mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}$ and h represent the degree measures of the angles, then Theorem 5.3 states that:

$\mathrm{f}=\mathrm{c}$,
$b=h$,
Figure 5.41
$\mathrm{e}=\mathrm{d}$ and
$\mathrm{a}=\mathrm{g}$.

Theorem 5.4: (Angle - sum theorem)

The sum of the degree measures of the interior angles of atriangle is equal to 180°.

Proof: Let ABC be a triangle and α, β and γ be the measures of its interior angles. We want to show that:

$$
\alpha+\beta+\gamma=180^{\circ}
$$

Figure 5.42 triangle

Statements	Reasons
1. Draw a line passing through A	1. Construction
\quad and parallel to $\overline{\mathrm{BC}}$	2. Definition of straight angle
2. $\mathrm{x}+\alpha+\boldsymbol{y}=\mathbf{1 8 0}^{\circ}$	3. Alternate interior angles
$3 . \mathrm{x}=\boldsymbol{\beta}$ and $y=\gamma$	4. Substitution
$4 . \beta+\alpha+\gamma=\mathbf{1 8 0}^{\circ}$	

Example 7. If the measures of the angles of a triangles are $2 \beta, 3 \beta$ and 4β, then give the measure of each angle.

Solution: Let the triangle be as shown in the Figure below,
$\mathrm{m}(\angle \mathrm{ACB})+\mathrm{m}(\angle \mathrm{CBA})+\mathrm{m}(\angle \mathrm{BAC})=180^{\circ}$ why?
$3 \beta+4 \beta+2 \beta=180^{\circ} \ldots \ldots .$. Substitution. $9 \beta=180^{\circ} \ldots \ldots \ldots$. Collect like terms. $\frac{9 \beta}{9}=\frac{180^{\circ}}{9} \ldots \ldots \ldots$ Dividing both sides by 9 . $\beta=20^{\circ} \ldots \ldots \ldots$. Simplifying.

When $\beta=20^{\circ}$

$$
\begin{aligned}
& \mathrm{m}(\angle \mathrm{~A})=2 \beta=2\left(20^{\circ}\right)=40^{\circ}, \mathrm{m}(\angle \mathrm{C})=3 \beta=3\left(20^{\circ}\right)=60^{\circ} \text { and } \\
& \mathrm{m}(\angle \mathrm{~B})=4 \beta=4\left(20^{\circ}\right)=80^{\circ}
\end{aligned}
$$

Example 8. In Figure 5.43 below, if u°, v° and x° are degree measures of the angles marked, then what is the value of $\mathrm{m}(\angle \mathrm{u})+\mathrm{m}(\angle \mathrm{v})$?

Solution:

$\mathrm{m}(\angle \mathrm{O})+\mathrm{m}(\angle \mathrm{x})+\mathrm{m}(\angle \mathrm{B})=180^{\circ} \ldots .$. Angle sum theorem.

$$
90^{\circ}+x+42^{\circ}=180^{\circ} \ldots . . \text { Substitution. }
$$

$$
\mathrm{m}(\angle \mathrm{x})+132^{\circ}=180^{\circ}
$$

$$
\mathrm{m}(\angle \mathrm{x})=48^{\circ}
$$

so $u=90^{\circ}$ and $v=42^{\circ}$
Therefore, $u+v=90^{\circ}+42^{\circ}$

$$
=132^{\circ}
$$

Theorem 5.5: The measure of an exterior angle of a triangle is equal to the sum of the measures of the two remote (non adjacent) interior angles.

Proof: let ABC be a triangle with $\overline{\mathrm{AC}}$ extended to form an exterior angle. Let α, β and γ be degree measures of the interior angles of triangle ABC and ω be the degree measure of the exterior angle.
We want to show that: $\alpha+\beta=\omega$

Figure 5.44 triangle

\mid Statements	
1. $\gamma+\omega=180^{\circ}$	Reasons
2. $\alpha+\beta+\gamma=180^{\circ}$	2. Supplementary angles
3. $\alpha+\beta+\gamma=\gamma^{+} \omega$	3. Suble sum theorem
4. $\alpha+\beta=\omega$	4. Subtractiong γ from both sides

Example 9. Calculate the value of the variables in Figures 5.45 below.

Figure 5.45

Solution:

a. $\mathrm{m}(\angle \mathrm{ABC})+\mathrm{m}(\angle \mathrm{BCA})+\mathrm{m}(\angle \mathrm{CAB})=180^{\circ} \ldots . \ldots$. Angle sum theorem.

$$
\begin{aligned}
56^{\circ}+\mathrm{x}+72^{\circ} & =180^{\circ} \ldots \ldots . . \text { Substitution. } \\
x+128^{\circ} & =180^{\circ} \\
x & =180^{\circ}-128^{\circ} \\
x & =52^{\circ}
\end{aligned}
$$

$$
\text { Now } \mathrm{m}(\angle \mathrm{ABC})+\mathrm{m}(\angle \mathrm{BAC})=\mathrm{m}(\angle \mathrm{ACD}) \ldots \ldots \ldots \text { Theorem 5.5. }
$$

$$
56^{\circ}+72^{\circ}=y \ldots \ldots . . \text { Substitution. }
$$

$$
128^{\circ}=y
$$

$$
\text { Or } y=128^{\circ}
$$

5 Qeometric Figures and Measurement

b. $\mathrm{y}+\mathrm{x}+\mathrm{w}+52^{\circ}=360^{\circ}$
$y+52+w+52=360^{\circ} \ldots \ldots \ldots \ldots . . x=52^{\circ}$ measures of vertically.
opposite angles

$$
\begin{aligned}
& y+w+104=360^{\circ} \\
& y+y=256^{\circ} \ldots \ldots . W=y \text { (measures of vertically opposite. } \\
& \text { angles are equal) and substitution. } \\
& 2 y=256^{\circ} \\
& y=128^{\circ}
\end{aligned}
$$

Thus $\mathrm{z}+\mathrm{y}+41^{\circ}=180^{\circ} \ldots \ldots \ldots$. Angle sum theorem.

$$
\begin{gathered}
z+128^{\circ}+41^{\circ}=180^{\circ} \ldots \ldots \ldots . \text { Substitution. } \\
z=180^{\circ}-169^{\circ} \\
z=11^{\circ}
\end{gathered}
$$

Exercise 5F

1. Find the degree measures of marked angles in Figure 5.46 below (the letters $\mathrm{a}-\mathrm{h}$ represent degree measures of the angles).

2. Find the degree measures of the marked angles in Figure 5.47 below.

Figure 5.47
3. Find the degree measure β of the marked angles in Figure 5.48 below.

Figure 5.48
4. In Figure 5.49 to the right if $\mathrm{m}(\angle \mathrm{ADB})=70^{\circ}$ and $\mathrm{m}(\angle \mathrm{BCA})=30^{\circ}$, then what is $\mathrm{m}(\angle \mathrm{CBD})$?

Figure 5.49
5. In Figure 5.50 given to the right. What is the sum of the measures $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, e and f of the angles marked.

Challenqe Problem

6. In Figure 5.51 given to the right, $\mathrm{m}(\angle \mathrm{ABC})=$ $32^{\circ}, \mathrm{m}(\angle \mathrm{BHE})=42^{\circ}$ and $\mathrm{m}(\angle \mathrm{ADE})=48^{\circ}$. Find $m(\angle N A D)$.

Figure 5.51

5 Geometric Figures and Mensurment

7. In Figure 5.52 given to the right $\overline{\mathrm{DE}} \| \overline{\mathrm{AB}}, \mathrm{m}(\angle \mathrm{D})=42^{\circ}$, $\mathrm{m}(\angle \mathrm{BCA})=108^{\circ}$. Find $\mathrm{m}(\angle \mathrm{B})$ and $m(\angle A)$.

Figure 5.52
A. The sum of the interior angles of a polygon

Activity 5.7

1. Calculate x.

Figure 5.53 pentagon

2. Calculate y

Figure 5.54 hexagon
3. Calculate the measure of the interior angles of:
a. a square
c. a hexagon
b. a pentagon
d. a heptagon

The measures of all interior angles of a quadrilateral always add up to 360°.
i) You can see this by checking that the angles in this quadrilaterial add up to 360° or

$$
\mathrm{m}(\angle \mathrm{~A})+\mathrm{m}(\angle \mathrm{~B})+\mathrm{m}(\angle \mathrm{C})+\mathrm{m}(\angle \mathrm{D})=360^{\circ}
$$

Figure 5.55 Quadrilateral
ii) By dividing the quadrilateral in to two triangles so that the measures of the interior angles of the two triangles add up to $180^{\circ}+180^{\circ}=360^{\circ}$.

Figure 5.56 Quadrilateral

Figure 5.57

If you draw all the diagonals from one vertex of a convex polygon, you will find non-overlapping triangles and you can also find that the sum of the measures of the interior angles of the polygon by adding the measures of all interior angles of these triangles in the polygon. Look at Figure 5.58 and count the triangles formed triangles in each polygon. Apply the angle sum theorem triangles in each polygon and try to find the sum of the measures of all the interior angles of each polygon.

Figure 5.58

5 Qeometric Figures and Measurement

Can you find a formula which will help you to find the sum of the measures of all the interior angles of any given convex polygon?

Example 10. In a pentagon, 3 triangles can be formed by the diagonals from one vertex see in Figure 5.59 below. (The letters represent the degree measures of the angles).
By the angle sum Theorem,
$\mathrm{a}+\mathrm{k}+\mathrm{h}=\mathrm{b}+\mathrm{g}+\mathrm{f}=\mathrm{c}+\mathrm{e}+\mathrm{d}=180^{\circ}$
Let the sum of the interior angles of the pentagon be β Then $\beta=\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}+\mathrm{e}+\mathrm{f}+\mathrm{g}+\mathrm{h}+\mathrm{k}$

$$
\begin{aligned}
& \beta=(\mathrm{a}+\mathrm{k}+\mathrm{h})+(\mathrm{b}+\mathrm{g}+\mathrm{f})+(\mathrm{e}+\mathrm{d}+\mathrm{c}) \\
& \beta=180^{\circ}+180^{\circ}+180^{\circ} \\
& \beta=3 \times 180^{\circ}
\end{aligned}
$$

Figure 5.59pentagon
Hence $\beta=540^{\circ}$.
Example 11. In a hexagon, 4 triangles can be formed by the diagonals from one vertex in Figure 5.58. By the angle sum theorem:
$\mathrm{a}+\mathrm{b}+\mathrm{c}=\mathrm{d}+\mathrm{k}+\mathrm{j}=\mathrm{e}+\mathrm{g}+\mathrm{i}=\mathrm{f}+\ell+\mathrm{h}=180^{\circ}$
Let the sum of the interior angles of the hexagon be β.
Then $\beta=\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d}+\mathrm{e}+\mathrm{f}+\mathrm{g}+\mathrm{h}+\mathrm{i}+\mathrm{j}+\mathrm{k}+\ell$
$\beta=(\mathrm{a}+\mathrm{b}+\mathrm{c})+(\mathrm{d}+\mathrm{j}+\mathrm{k})+(\mathrm{e}+\mathrm{g}+\mathrm{i})+(\mathrm{f}+\mathrm{h}+\ell)$
$\beta=180^{\circ}+180^{\circ}+180^{\circ}+180^{\circ}$
$\beta=4 \times 180^{\circ}$

Figure 5.60 Hexagon

Hence $\beta=720^{\circ}$
Table 5.3 Number of sides of a polygon and the respective sum of degree measures of all its interior angles.

Number of sides of polygon	Number of triangles formed by diagonals from one vertex	Sum of degree measures of interior angles
3	1	$1 \times 180^{\circ}=180^{\circ}$
4	2	$2 \times 180^{\circ}=360^{\circ}$
5	3	$3 \times 180^{\circ}=540^{\circ}$

5 Qeometric figures and Measurement

6	4	$4 \times 180^{\circ}=720^{\circ}$
7	5	$5 \times 180^{\circ}=900^{\circ}$
8	6	$?$
9	7	$?$
10	8	$?$
n	$n-2$	$?$

You might have noticed that for an n - sided polygon the number of triangles formed is 2 less than the number of sides n. If that is so you can write the following:

The formula for the number of triangle, T , determined by diagonals drawn from one vertex of an n - sided polygon is $\mathrm{T}=\mathrm{n}-2$.
(?) What did you notice again?
Since you have already seen that the sum of the measures of the three angles of a triangles is 180°, you can make the following generalization.

The formula for the sum, S of the measures of all the interior angles of a polygon of n sides is given by $S=(n-2) 180^{\circ}$.

Definition 5.13: A polygon whose all sides are congruent is called an Equilateral polygon.

An Equilateral triangle and a rhombus are examples of equilateral polygons.

Figure 5.61 Examples of equilateral polygons

Definition 5.14: Apolygon whose all angles are congruent (of the same size or measure) is called an equiangular polygon.

A rectangle is an example of equiangular polygon.
Definition 5.15: A polygon which is both equilateral and equiangular is called a regular polygon.

Equilateral triangle and square are examples of regular polygon.

Figure 5.62 Example of regular polygon.
Example 12. Find the sum of the measures of all the interior angles in a polygon having 30 sides.

Solution:

$$
\begin{aligned}
& \mathrm{n}=30 \\
& \mathrm{~S}=(\mathrm{n}-2) \times 180^{\circ} \ldots \ldots . . \text { Given formula } \\
& \mathrm{S}=(30-2) \times 180^{\circ} \ldots \ldots . . . \text { Substitution } \\
& \mathrm{S}=28 \times 180^{\circ} \ldots \ldots \ldots \ldots \ldots . \text { Simplifying } \\
& \mathrm{S}=5040^{\circ}
\end{aligned}
$$

Therefore; the sum S, of the measures of all the angles of the polygon is 5040°.
Example 13. If all the angles of a polygon with 40 sides are congruent, then find the measure of each angle of the polygon.

Solution:

$$
n=40
$$

let y be the measure of each angle of the polygon.

Then the sum of the angles of the polygon on one hand is:
$S=40 y$ \qquad Equation 1
On the other hand, the sum of the angles is given by the formula:
$S=(n-2) \times 180^{\circ} \ldots \ldots$. Equation 2
Equating equation(1) and Equation(2) we get:

$$
\begin{aligned}
40 \mathrm{y} & =(\mathrm{n}-2) \times 180^{\circ} \\
40 \mathrm{y} & =(40-2) \times 180^{\circ} \\
40 \mathrm{y} & =38 \times 180^{\circ} \\
\mathrm{y} & =\frac{38 \times 180^{\circ}}{40} \\
y & =171^{\circ}
\end{aligned}
$$

so each of the 40 sides has a measure of 171°.
Example 14. The angles of a hexagon are $x, 2 \frac{1}{2} x, 3 \frac{1}{2} x, 2 x, x$ and $2 x$. what is the value of x.

Solution:

The sum of the measures of the interior angles of a hexagon is 720°.
Thus, $x+2 \frac{1}{2} x+3 \frac{1}{2} x+2 x+x+2 x=720^{\circ}$

$$
\begin{aligned}
12 \mathrm{x} & =720^{\circ} \\
\mathrm{x} & =\frac{720^{\circ}}{12} \\
\mathrm{x} & =60^{\circ}
\end{aligned}
$$

Example 15. The angles of a pentangon are $x,\left(x+20^{\circ}\right),\left(x-15^{\circ}\right), 2 x$ and $\left(\frac{3}{2} x+30^{\circ}\right)$. Find the value x.

Solution: For a pentagon the sum of the measures of the interior angles is 540° Thus $x+\left(x+20^{\circ}\right)+\left(x-15^{\circ}\right)+2 x+\left(\frac{3}{2} x+30^{\circ}\right)=540^{\circ}$

$$
\begin{aligned}
x+x+20^{\circ}+x-15^{\circ}+2 x+\frac{3}{2} x+30^{\circ} & =540^{\circ} \\
\frac{13}{2} x+35^{\circ} & =540^{\circ} \\
\frac{13}{2} x & =505^{\circ} \\
13 x & =1010^{\circ} \\
x & =\frac{1010^{\circ}}{13}
\end{aligned}
$$

Therefore, the value of x is $\frac{1010^{\circ}}{13}$

Note: The measure of each interior angle of an n-sided regular polygon

$$
\text { is } \frac{(n-2) \times 180^{\circ}}{n} .
$$

Example 16. Find the degree measure of each interior angle of a regular,
a. 6 - sided polygon.
b. 18-sided polygon.

Solution:

a. The degree measure of a regular polygon $=\frac{(n-2) \times 180^{\circ}}{n}$

$$
\begin{aligned}
& =\frac{(6-2) \times 180^{\circ}}{6} \ldots \ldots . \text { For } \mathrm{n}=6 \\
& =\frac{4 \times 180^{\circ}}{6} \\
& =120^{\circ}
\end{aligned}
$$

b. The degree measure of a regular polygon $=\frac{(n-2) \times 180^{\circ}}{n}$

$$
\begin{aligned}
& =\frac{(18-2) \times 180^{\circ}}{18} \ldots \ldots . \text { For } \mathrm{n}=18 \\
& =16 \times 10^{\circ} \\
& =160^{\circ}
\end{aligned}
$$

Example 17. If the sum of the measures of all the interior angles of a polygon is 1440°, how many sides does the polygon have?
Given: S = 1440°
Required: let $\mathrm{n}=$ the number of sides of the polygon?
Solution: $S=(n-2) \times 180^{\circ} \ldots \ldots \ldots \ldots .$. Given formula

$$
\begin{aligned}
(\mathrm{n}-2) \times 180^{\circ} & =1440^{\circ} \ldots \ldots \ldots . \text { Substitution } \\
\mathrm{n}-2 & =\frac{1440^{\circ}}{180^{\circ}} \\
\mathrm{n}-2 & =8 \\
\mathrm{n} & =10
\end{aligned}
$$

So, the polygon has 10 sides.

Exercise 5G

1. Find the sum of the measures of all the interior angles of a polygon with the following number of sides.
a. 12
b. 20
C. 14
d. 11
2. Find the sum of the measures of each interior angles of:
a. a regular pentagon.
c. a regular hexagon.
b. a regular octagon.
d. a regular 15 sided figure.
3. Can a regular polygon have an interior angle of:
a. 160° ?
b. 135° ?
c. 169° ?
d. 150° ?

Exaplain why?
4. An octagon has angles of $120^{\circ}, 140^{\circ}, 170^{\circ}$ and 165°. The other angles are all equal. Find their measures.
5. The measures angles of a hexagon are $4 x, 5 x, 6 x, 7 x, 8 x$ and $9 x$. Calculate the size of the largest angle.
6. The angles of a pentagon are $6 x,\left(2 x+20^{\circ}\right),\left(3 x-20^{\circ}\right), 2 x$ and $14 x$. Find x.
7. The interior angle of a polygon is 100°. The other interior angles are all equal to 110°. How many sides has the polygon?
8. In Figure 5.63 to the right, what is the sum of the measures of angles given by a, b, c, d, e and f.

9. In Figure 5.64 to the right, what is the sum of the measures of angles given by a, b, c, d, e, f, g, and h.

Figure 5.64

5. Qeometric Figures and Measurement

10. Find the values of $\beta, \theta, \sigma, \propto$, and δ.

Figure 5.65

Challenqe Problem

11. In Figure 5.66 shown, prove that the sum of all the interior angles is equal to two right angles.

Figure 5.66
12. In Figure 5.67 given to the right, what is the sum of the measure of angles given by a, b, c, d, e, f, g, h and i?

Figure 5.67
13. In Figure 5.68 given to the right, what is the measures of angles given by a, b, c, d, e, f, g, h, i and j.

5.3. Measurement

There are only three special polygons, other than the rectangle (square) whose areas are considered important enough to investigate. These polygons are the triangles, the parallelogram and trapezium. The area of any other polygon is found by drawing segments as to divide it into a combination of these four figures.

5.3.1. Area of a Triangle

Group Work 5.4

Discuss with your friends.

1. The perimeter of a square is 64 cm . what is the length of a side?
2. The area of a square is $81 \mathrm{~cm}^{2}$. What is its perimeter?
3. In a rectangle the length is twice the width. The perimeter is 36 cm . Find the length, width and area of this rectangle.
4. In a rectangle the length is 20 cm more than the width. The perimeter is 140 cm . Find the area.
5. Suggest units of area to measure the area of the following regions (Choose from $\mathrm{mm}^{2}, \mathrm{~cm}^{2}, \mathrm{~m}^{2}$ or km^{2}).
a. the page of an exercise book.
b. the floor of your class room.
c. a television screen.

The area of a triangle tells us how many unit squares the triangle contains. To find the area of a triangle, you need to know the base and the height of the triangle.

From grade six mathematics lessons you remember that triangles were classified according to the lengths of their sides and the sizes of their angles.
? Do you remember what they are called.?(what are they)?

5 Qeometric fiyures and Mleasurement

Write the names of the triangles given below.

Figure 5.69 Types of triangles
You will see how the area of each triangle given above shall be computed.
First you will revise on the area of a right triangle. To compute the area of such types of figures you will apply the knowledge of the area of rectangles. (see Figure 5.70). You already know that if the sides of a triangle are 'a' and 'b' then the area A of the rectangle is given by:
$\mathrm{A}=\mathrm{a} \times \mathrm{b}$. We also know that each diagonal divides the rectangle in to two congruent triangles: Hence, the area A of the righttriangle $A B C$ is given by $A=\frac{a \times b}{2}$

Figure 5.70 rectangle

Note: In the rectangle ABCD shown in Figure 5.70 above the sides $\overline{\mathrm{AB}}$ and $\overline{\mathbf{B C}}$ of triangle ABC are respectively called the base and the height or altitutde.

Theorem 5.6: The area of a right - angled triangle ABC with base b and height h is given by

$$
A=\frac{b h}{2}
$$

Figure 5.71 Right - angled triangle
? How can you find the formula for the area of a triangle?
Now you will see how the area of a triangle shall be computed. For this you are going to use the knowledge you have acquired before. Consider the following two triangle
You know that in Figure 5.72 the altitude/height/ divides the triangle in

Figure 5.72 Acute angled triangle to two right triangles.

Hence, the $\mathrm{a}(\triangle \mathrm{ABC})=\mathrm{a}(\Delta \mathrm{ABD})-\mathrm{a}(\Delta \mathrm{CBD})$

$$
\begin{aligned}
& =\frac{1}{2} \ell h-\frac{1}{2} \mathrm{dh} \\
& =\frac{1}{2} \mathrm{~h}(\ell-\mathrm{d}) \ldots \ldots . \text { Note thet, } \ell-\mathrm{d}=\mathrm{b} \\
& =\frac{1}{2} \mathrm{bh}
\end{aligned}
$$

Similarly consider in Figure 5.73
Hence, the $\mathrm{a}(\triangle \mathrm{ACB})=\mathrm{a}(\triangle \mathrm{ABD})-\mathrm{a}(\Delta \mathrm{CBD})$

$$
\begin{aligned}
& =\frac{1}{2} \ell \mathrm{~h}-\frac{1}{2} \mathrm{dh} \\
& =\frac{1}{2} \mathrm{~h}(\ell-\mathrm{d}) \ldots \ldots \ldots . \text { Note that, } \ell-\mathrm{d}=\mathrm{b} \\
& =\frac{1}{2} \mathrm{bh}
\end{aligned}
$$

Theorem 5.7: The area A of a triangle whose base is b and altitude to this base is h is given by $A=\frac{1}{2} \mathrm{bh}$

Figure 5.74

Example 18. Find the area of an isosceles right angled triangle with length of legs 7 cm .

Solution: See the following figure below
$\triangle \mathrm{ABC}$ is isosceles right angled triangle, with length of legs $\mathrm{AB}=\mathrm{BC}=7 \mathrm{~cm}$

$$
\text { Thus, } \begin{aligned}
(\triangle \mathrm{ABC}) & =\frac{1}{2}(\mathrm{AB} \times \mathrm{BC}) \\
& =\frac{1}{2}(7 \mathrm{~cm} \times 7 \mathrm{~cm}) \\
& =\frac{49}{2} \mathrm{~cm}^{2}
\end{aligned}
$$

Therefore, the area of isosceles right angled triangle is $\frac{49}{2} \mathrm{~cm}^{2}$.
Example 19. In Figure 5.75 to the right, the outer triangle has base 8 cm and height 7 cm .

Figure 5.75
a. Calculate the area of the outer triangle. The base and height of the inner triangle are half those of the outer triangle.
b. Calculate the area of the inner triangle.
c. Calculate the area of the shaded part(region).

Solution:

a. $\mathrm{a}(\triangle \mathrm{ABC})=\frac{1}{2} \mathrm{bh}$ Theorem 5.7

$$
\begin{aligned}
& =\frac{1}{2}(8 \mathrm{~cm} \times 7 \mathrm{~cm}) \ldots \ldots \ldots \text { Substitution } \\
& =28 \mathrm{~cm}^{2} \ldots \ldots \ldots \ldots \ldots \text { Simplifying }
\end{aligned}
$$

b. $\quad \mathrm{a}\left(\Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}\right)=\frac{1}{2}\left(\frac{\mathrm{bh}}{2}\right)$

$$
\begin{aligned}
& =\frac{1}{2}\left(4 \mathrm{~cm} \times \frac{7}{2} \mathrm{~cm}\right) \\
& =7 \mathrm{~cm}^{2}
\end{aligned}
$$

c. a(shaded region) $=\mathrm{a}$ (outer triangle) $-\mathrm{a}($ inner triangle)

$$
\begin{aligned}
& =28 \mathrm{~cm}^{2}-7 \mathrm{~cm}^{2} \\
& =21 \mathrm{~cm}^{2}
\end{aligned}
$$

Example 20. In Figure 5.76 below $\overline{\mathrm{CD}} \perp \overline{\mathrm{AB}}$ with $\mathrm{AB}=12 \mathrm{~cm}$ and if the vertex C is moved to E by 3 cm , then what is the area of the shaded region?

Figure 5.76

Solution:

Let $\mathrm{DE}=\mathrm{x} \mathrm{cm}$, then
Area of shaded region
$=\mathrm{a}(\Delta \mathrm{ABC})-\mathrm{a}(\Delta \mathrm{ABE})$
$=\frac{1}{2}\left(12(x+3)-\frac{1}{2}(12(x))\right.$
$=6 x+18-6 x$
$=18$

Therefore, the area of the shaded region is $18 \mathrm{~cm}^{2}$.

Example 21. Find the area of the shaded part of the Figure 5.77 given below.

Figure 5.77

Solution:

$\mathrm{a}($ shaded part $)=\frac{1}{2} \mathrm{bh}$

$$
\begin{aligned}
& =\frac{1}{2}(60 \mathrm{~cm} \times 20 \mathrm{~cm}) \\
& =600 \mathrm{~cm}^{2}
\end{aligned}
$$

Therefore, the area of the shaded region is $600 \mathrm{~cm}^{2}$.

Note: If the lengths of the sides of a triangle are a, b and c , then the perimeter p of the triangle is $p=a+b+c$.

Figure 5.78

Example 22. If the perimeter of the isosceles triangle ABC shown in Figure 5.79is 14 cm and its base side is 6 cm , what is the length of its equal sides?

Figure 5.79

Solution:

Let $\mathrm{x}=$ the length of the equal sides(in cm)
Since the perimeter of a triangle is the sum of the lengths of its side,
Then $\mathrm{x}+\mathrm{x}+6=\mathrm{P}$

$$
\begin{aligned}
2 x+6 & =14 \\
2 x & =8 \\
x & =4
\end{aligned}
$$

Thus, the lengths of its equal sides are 4 cm each.

Exercise 5t

1. Find the area of each triangles.
a.

Figure 5.80
2. In Figure 5.81 represents a wall of a certain building. Find the area of the wall.

Figure 5.81
3. What is the area of the triangle?

Figure 5.82
4. In Figure 5.83, what is the area of the shaded part of the rectangle?
5. What is the perimeter and area of to the right Figure 5.84.

Figure 5.83

Challenge Problem

6. In Figure 5.85, EFN is a straight line. Find the area of $\triangle \mathrm{DEF}$.

Figure 5.85

5 Geometric figures and Measurement

5.3.2. Perimeter and Area of Trapezium

Group Work 5.5

Discuss with your friends

1. Find the perimeter and area of a trapezium if its parallel sides are 24 cm and 48 cm , and its non parallel sides are each 13 cm long.
2. Calculate the areas of each trapezium given below.

Figure 5.86
3. The area of a trapezium is $276 \mathrm{~cm}^{2}$. The altitude is 12 cm and one base is 14 cm long. Find the other base. How can you find the formula for the area of a trapezium?

Consider the trapezium ABCD shown in Figure 5.87 below.
Now divide the trapezium in to two triangles, namely $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ACD}$. These two triangles have the same altitude h, but different bases b_{1} and b_{2}. Where b_{1} and b_{2} are the lengths of the parallel sides and h is the perpendicular distance between them.

Thus $\mathrm{a}(\mathrm{ABCD})=\mathrm{a}(\triangle \mathrm{ABC})+\mathrm{a}(\triangle \mathrm{ACD})$

$$
\begin{aligned}
& =\frac{1}{2}(\mathrm{BC} \times \mathrm{AF})+\frac{1}{2}(\mathrm{AD} \times \mathrm{CE}) \\
& =\frac{1}{2}\left(\mathrm{~b}_{1} \mathrm{~h}\right)+\frac{1}{2}\left(\mathrm{~b}_{2} \mathrm{~h}\right) \cdot \cdots \mathrm{AF}=\mathrm{CE}=\mathrm{h} \\
& =\frac{h}{2}\left(\mathrm{~b}_{1}+\mathrm{b}_{2}\right)
\end{aligned}
$$

Figure 5.87

Therefore, the area of the trapezium is $\frac{h}{2}\left(\mathrm{~b}_{1}+\mathrm{b}_{2}\right)$.

Theorem 5.8: If the lengths of the bases of a trapezium are denoted by b_{1} and b_{2} and its altitude is denoted by h, then the area A of the trapezium is given by:

$$
A=\frac{h}{2}\left(b_{1}+b_{2}\right)
$$

Figure 5.88

Example 23. What is the area of the following trapezium Shown in Figure 5.89.

Solution:

Let $\mathrm{b}_{1}=6 \mathrm{~cm}, \mathrm{~b}_{2}=10 \mathrm{~cm}$ and $\mathrm{h}=4 \mathrm{~cm}$
Then $\mathrm{A}=\frac{h}{2}\left(\mathrm{~b}_{1}+\mathrm{b}_{2}\right)$

$$
\begin{aligned}
& A=\frac{4 \mathrm{~cm}}{2}(6 \mathrm{~cm}+10 \mathrm{~cm}) \\
& A=2 \mathrm{~cm}(16 \mathrm{~cm}) \\
& A=32 \mathrm{~cm}^{2}
\end{aligned}
$$

Therefore, the area of the trapezium is $32 \mathrm{~cm}^{2}$.

Note: If the length of the sides of a trapezium ABCD are a, b, c and d, then the perimeter P of the trapezium is given by:

$$
\begin{aligned}
& P=A B+B C+C D+D A \\
& P=a+b+c+d
\end{aligned}
$$

Example 24. In Figure 5.90 to the right, find the perimeter of the trapezium ABCD .

Figure 5.90
Thus $\mathrm{P}($ trapezium ABCD$)=\mathrm{AB}+\mathrm{BC}+\mathrm{CD}+\mathrm{DA}$ \qquad Perimeter

$$
\begin{aligned}
& =12 \mathrm{~cm}+10 \mathrm{~cm}+24 \mathrm{~cm}+10 \mathrm{~cm} \\
& =56 \mathrm{~cm}
\end{aligned}
$$

Therefore, the perimeter of the trapezium ABCD is 56 cm .

Exercise 51

1. Find the perimeter of the trapezium in Figure 5.91
if $\mathrm{x}=9$ and $\mathrm{y}=7$.

Figure 5.91
2. The area of a trapezium is $35 \mathrm{~cm}^{2}$. Find its altitude if the beses are 6 cm and 8 cm .
3. If the area of the trapezium ABCD is $30 \mathrm{~cm}^{2}$, find the value of b_{1}. (see Figure 5.92).

Figure 5.92

5.3.3. Perimeter and area of Parallelogram

Activity 5.8

1. Find the area A of parallelogram $P Q R S$ where $\mathrm{b}=10 \mathrm{~cm}$ and $\mathrm{h}=6.7 \mathrm{~cm}$.
2. Derive the area formula for a parallelogram.

Figure 5.93

Now you pay attention to how the area of a parallelogram shall be computed, in doing so you are going to use the knowledge you have acquired so far, Let us first look at Figure 5.94 to the right.

Figure 5.94

You know that the diagonal divides the parallelogram in to two congruent triangles.

$$
\begin{aligned}
\text { Hence, the } \mathrm{a}(\mathrm{ABCD})= & \mathrm{a}(\triangle \mathrm{ADC})+\mathrm{a}(\triangle \mathrm{ABC}) \\
= & \frac{1}{2}(\mathrm{DC} \times \mathrm{AE})+\frac{1}{2}(\mathrm{AB} \times \mathrm{BF}) \\
= & \frac{1}{2} \mathrm{bh}+\frac{1}{2} \mathrm{bh} \ldots \ldots \ldots \ldots \mathrm{DC}=\mathrm{AB}=\mathrm{b} \text { because opposite sides } \\
& \text { of a parallelogram have equal length } \\
= & \frac{2}{2} \mathrm{bh} \\
= & \mathrm{bh}
\end{aligned}
$$

Therefore the area of the parallelogram $=$ length of base \times the perpendicular height between this base and its opposite side.

Theorem 5.9: The area A of a parallelogram with length of base b and corresponding height h is given by $A=b h$.

Figure 5.95

Example 25. The area of a parallelogram is $48 \mathrm{~cm}^{2}$. Find its altitude if the base is 6 cm .
Solution: $\mathrm{A}_{\text {(parallelogram) }}=\mathrm{bh} . \ldots$. Theorem 5.9

$$
\begin{aligned}
48 \mathrm{~cm}^{2} & =6 \mathrm{~cm} \times \mathrm{h} \ldots \ldots \ldots . . \text { Substitution } \\
\text { Then } \mathrm{h} & =\frac{48 \mathrm{~cm}^{2}}{6 \mathrm{~cm}} \ldots \ldots \ldots \ldots . . \text { Dividing both sides by } 6 \\
h & =8 \mathrm{~cm}
\end{aligned}
$$

Therefore, the height of the parallelogram is 8 cm .

Note: In Figure 5.96, if the length of the sides of a parallelogram ABCD are a and b, then the perimeter P of the parallelogram is given by:

$$
\begin{aligned}
P=A B+B C+C D & +D A \\
P & =b+a+b+a \\
P & =2 a+2 b \\
P & =2(a+b)
\end{aligned}
$$

Example 26. The perimeter of the parallelogram is 46 cm . Find the sum of the lengths of its sides.

Solution: Let a and b be the length of sides of the parallelogram.

$$
\begin{aligned}
\text { Then } \mathrm{P} & =2(\mathrm{a}+\mathrm{b}) \\
46 \mathrm{~cm} & =2(\mathrm{a}+\mathrm{b}) \\
\mathrm{a}+\mathrm{b} & =23 \mathrm{~cm}
\end{aligned}
$$

Therefore, the sum of the lengths of sides is 23 cm .

Exercise 5J

1. In Figure 5.96, AP, AQ are altitudes of the parallelogram ABCD.
a. If $A Q=4 \mathrm{~cm}, C D=5 \mathrm{~cm}$, find the area of ABCD .
b. If the area of $\mathrm{ABCD}=24 \mathrm{~cm}^{2}$, $A B=6 \mathrm{~cm}$ then find $A Q$.

Figure 5.96
c. If $A B=5 \mathrm{~cm}, A P=4 \mathrm{~cm}, \mathrm{AD}=6 \mathrm{~cm}$, then find AQ .
2. PQRS is a parallelogram of area $18 \mathrm{~cm}^{2}$. Find the length of the corresponding altitudes if $\mathrm{PQ}=5 \mathrm{~cm}$ and $\mathrm{QR}=4 \mathrm{~cm}$.
3. ABCD is a parallelogram in which $A B=3 \mathrm{~cm}, B C=12 \mathrm{~cm}$ and the perpendicular from B to AD is 2.5 cm . Find the length of the perpendicular from A to CD .

Figure 5.97

Challenqe Problem

4. The lengths of the two altitudes of a parallelogram are $4 \mathrm{~cm}, 6 \mathrm{~cm}$ and the perimeter of the parallelogram is 40 cm . Find the lengths of the sides of the parallelogdram.

5.3.4. Circumference of a Circle

Activity 5.9

Discuss with your teacher before starting the lesson under this topic you will need a ruler, pair of compasses and some string or thread.

1. a. Mark a point on your paper. Use your compasses and draw three circles of different radii (or diameters) with the marked point as a center.
b. put the thread slowly and carefully around each circle untill its both ends join (do not over lap).
c. stratch this thread against the ruler and measure its length which gives the circumference.
d. calculate the ratio $=\frac{\text { circumfrence of the circle }}{\text { Diameter of the circle }}$.
2. What do you notice about the ratio $=\frac{\text { circumference of a circle }}{\text { diameter of this circle }}$.
a)

b)

c)

Figure 5.98
3. With your own words describe each of the following
a. center of a circle.
b. radius of a circle.
c diameter of a circle.

The perimeter of a circle is called its circumference. The circumference of a circle is related to its radius or diameter.

Figure 5.99

5 Geometric Figures and Measurement

Introducing π (pi)

If you compare the answers to the class Acitivity 5.9 with that of your friends, you should find that for each circle the circumference of a circle divide by its diameter is approximately equal to 3.14 . The actual value is a special namber represented by π.

You can not write the exact value of π, because the number π is a non recurring or non-terminating decimal which is found some where between 3.141592 and 3.141593.

If you press the π key on a calculator the value $3.141592654 \ldots$ appears. In calculations we often use the value of π correct to two decimal place as 3.14 or correct to three decimal place as 3.142 or $\frac{22}{7}$.

Finding a formula for the circumference

Representing the circumference by 'c' and the diameter by ' d ', you can equate the ratio in Activity $5.9(1 \mathrm{~d})$ as $\frac{\text { circumference }}{\text { diameter }}=\frac{\mathrm{C}}{\mathrm{d}} \approx \frac{22}{7} \approx 3.14 \approx \pi$.
To give a formula to find the circumference of a circle using its diameter. Thus,
$\frac{\mathrm{c}}{\mathrm{d}} \times \mathrm{d}=\pi \times \mathrm{d}$ \qquad Multiplying both sides by d

So $C=\pi d$ \qquad The required formula

You can also rewrite the formula for the circumference using the radius.
Since the diameter is twice the radius; $\mathrm{d}=2 \mathrm{r}$
So $\mathrm{C}=\pi \times 2 \mathrm{r}$
Or $\mathrm{C}=2 \pi \mathrm{r}$
Theorem 5.10: The circumference of a circle whose diameter d is given by: $C=\pi \times d$ or $C=\pi \times 2 r$ where c is the circumference d is the diameter r is the radius

Figure 5.100

Example 27. Find the circumference of a circle with diameter 6 cm . (Hint $\pi=3.14$).
Solution: $\mathrm{C}=\pi \mathrm{d}$

$$
\mathrm{C}=\pi \times 6 \mathrm{~cm}=3.14 \times 6 \mathrm{~cm}=18.84 \mathrm{~cm}
$$

Therefore, the circumference of a circle is 18.84 cm .

Figure 5.101

Example 28. Find the circumference of a circle with radius 5 cm .
Solution: $\mathrm{C}=2 \pi \mathrm{r}$

$$
\begin{aligned}
& \mathrm{C}=2 \times 3.14 \times 5 \mathrm{~cm} \\
& \mathrm{C}=31.4 \mathrm{~cm}
\end{aligned}
$$

Figure 5.102

Exercise 5K

1. Find the circumference of the circle with each of the givn diameters below. Write your answers to three significant digits. (Take $\pi=3.14$)
a. 4 cm
b. 10 cm
c. 8 cm
d. 12 cm
e. 2.5 cm
f. 8.25 cm
2. Find the circumferences of the circles with the radii given below. Write your answers to three significant digits (Take $\pi=3.14$).
a. 8 cm
b. 50 cm
c. 12 cm
d. 2.5 cm
e. 3.6 cm
f. 8.26 cm
3. Ahmed's bike wheel has a circumference of 125.6 cm . Find the diameter and the radius of the wheel.
4. A piece of land has a shape of semicircular region as shown in Figure 5.103 to the right. If the distance between points A and B is 200 meteres, find the perimeter of the land.

Figure 5.103

5. Geometric Figures and Measurement

5. Find the perimeter of the field whose shape is as shown in Figure 5.104 to the right. The arcs on the left and right are semicircle of radius 100 m and the distance between pairs of end points of the two arcs is equal to 200 m each.

Challenge Problem

6. In Figure 5.105 to the right find the perimeter of the quarter circle.

5.3.5. Area of a circle

Activity 5.10

Figure 5.104

1. Find the areas of the circles with radius:
a. 8 cm
b. 5 cm
c. 10 cm
d. 12 cm
2. Find the areas of the circles with these diameters:
a. 18 cm
b. 20 cm
c. 16 cm
d. 17 cm

As you have seen, in the previous lessons, the area of a plane figure can be determined by counting unit squares fully contained by the figure. You have seen this when you were discussing about the area of a rectangle. In this lesson you will learn how to find a formula for finding the area of a circle. To find the formula for the area of a circle the following steps is very important.
Step i: Draw a circle with radius 4 cm .
Step ii: Draw diameters at angles of 20° to each other at the center to divide the circle in to 16 equal parts. Carefully cut out these 16 parts.
Step iii: Draw a straight line. Place the cut - out pieces alternately corner to curved edge against the line. Stick them together side by side and close enough.

It would be very difficult to cut out the parts of the circle if you used 1^{0} between the diameters, but the final shape whith the same color shade the sectors that are labelled by odd numbers as shown would be almost an exact rectangle.

Figure 5.106
In Figure 5.106 (b) the two longer sides of the rectangle make up the whole circumference $\pi \mathrm{d}$ or $2 \pi \mathrm{r}$, so one length is $\pi \mathrm{r}$. The width is the same as the radius of the circle, r.
So the area of the rectangle $=$ length \times width

$$
\begin{aligned}
& =\pi r \times r \\
& =\pi r^{2}
\end{aligned}
$$

This is the same as the area of the circle, so

$$
\text { Area of acircle }=\mathrm{A}=\pi \mathrm{r}^{2}
$$

Theorem 5.11: The area of a circle whose radius r unit long is given by

$$
A=\pi r^{2} \text { or } A=\pi\left(\frac{d}{2}\right)^{2}=\frac{\pi d^{2}}{4} \text { since } \frac{d}{2}=r
$$

Example 29. Find the area of a circle with diameter 8 cm .
Solution: $A=\frac{\pi d^{2}}{4}$

$$
\begin{aligned}
& \mathrm{A}=\frac{\pi}{4}(8 \mathrm{~cm})^{2} \\
& \mathrm{~A}=\frac{\pi}{4} \times 64 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\mathrm{A}=16 \pi \mathrm{~cm}^{2} \text {. Therefore, the area of a circle is } 16 \pi \mathrm{~cm}^{2} .
$$

Example 30. In Figure 5.107 to the right, find the area of the quarter circle of radius 8 cm . (use $\pi=3.14$) .

Solution: The given figure is $\frac{1}{4}$ of a circle with radius 8 cm .

$$
\begin{aligned}
& \mathrm{A}=\frac{1}{4}\left(\pi \mathrm{r}^{2}\right) \\
& \mathrm{A}=\frac{1}{4}\left(3.14 \times(8 \mathrm{~cm})^{2}\right) \\
& \mathrm{A}=\frac{1}{4}\left(3.14 \times 64 \mathrm{~cm}^{2}\right) \\
& \mathrm{A}=50.24 \mathrm{~cm}^{2}
\end{aligned}
$$

Figure 5.107

Therefore, the area of the quarter circle is $50.24 \mathrm{~cm}^{2}$.
Example 31. Find the area of each shaded region below.

a.

b.

C.

Figure 5.108

Solution:

a. \quad Area of the outer circle $=\frac{\pi \mathrm{d}^{2}}{4}$

$$
\begin{aligned}
& =\frac{\pi(35 \mathrm{~cm})^{2}}{4} \\
& =\frac{3.14 \times 1225}{4} \mathrm{~cm}^{2} \\
& =\frac{3846.5}{4} \mathrm{~cm}^{2} \\
& =961.625 \mathrm{~cm}^{2}
\end{aligned}
$$

and area of the inner circle $=\frac{\pi d^{2}}{4}$

$$
\begin{aligned}
& =\frac{\pi(25 \mathrm{~cm})^{2}}{4} \\
& =\frac{\left(3.14 \times 625 \mathrm{~cm}^{2}\right)}{4} \\
& =\frac{1962.5 \mathrm{~cm}^{2}}{4} \\
& =490.625 \mathrm{~cm}^{2}
\end{aligned}
$$

Therefore, area of the shaded region = area of outer circle - area of inner circle

$$
\begin{aligned}
& =(961.25-490.625) \mathrm{cm}^{2} \\
& =470.625 \mathrm{~cm}^{2}
\end{aligned}
$$

Therefore, the area of the shaded region is $470.625 \mathrm{~cm}^{2}$.
b. Area of the circle $=\frac{\pi d^{2}}{4}$

$$
\begin{aligned}
& =\frac{\pi(35 \mathrm{~cm})^{2}}{4} \\
& =\frac{3.14 \times 1225 \mathrm{~cm}^{2}}{4} \\
& =\frac{3846.5 \mathrm{~cm}^{2}}{4} \\
& =961.625 \mathrm{~cm}^{2}
\end{aligned}
$$

and area of the square $=S^{2}$

$$
\begin{aligned}
& =(8 \mathrm{~cm})^{2} \\
& =64 \mathrm{~cm}^{2}
\end{aligned}
$$

Therefore, area of the shaded region $=$ area of a circle - area of a square

$$
\begin{aligned}
& =(961.625-64) \mathrm{cm}^{2} \\
& =897.625 \mathrm{~cm}^{2}
\end{aligned}
$$

c. \quad Area of the circle $=\frac{\pi d^{2}}{4}$

$$
\begin{aligned}
& =\frac{3.14 \times(10 \mathrm{~cm})^{2}}{4} \\
& =\frac{3.14 \times 100 \mathrm{~cm}^{2}}{4} \\
& =\frac{314 \mathrm{~cm}^{2}}{4} \\
& =78.5 \mathrm{~cm}^{2}
\end{aligned}
$$

and area of the square $=S^{2}$

$$
\begin{aligned}
& =(10 \mathrm{~cm})^{2} \\
& =100 \mathrm{~cm}^{2}
\end{aligned}
$$

Therefore, area of the shaded region $=$ area of a square - area of a circle

$$
\begin{aligned}
& =(100-78.5) \mathrm{cm}^{2} \\
& =21.5 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the area of the shaded region is $21.5 \mathrm{~cm}^{2}$.

Example 32. If the area of a circle is $154 \mathrm{~cm}^{2}$, then find its circumference

$$
\left(\pi \approx \frac{22}{7}\right)
$$

Solution:

i. To find the radius; begin with

$$
A=\pi r^{2} \text { and put } A=154 \mathrm{~cm}^{2}
$$

Therefore, $\pi r^{2}=154 \mathrm{~cm}^{2}$

$$
\begin{aligned}
\frac{22}{7} \mathrm{r}^{2} & =154 \mathrm{~cm}^{2} \\
\mathrm{r}^{2} & =154 \mathrm{~cm}^{2} \times \frac{7}{22} \\
\mathrm{r}^{2} & =49 \mathrm{~cm}^{2} \\
\mathrm{r} & \times \mathrm{r}=7 \mathrm{~cm} \times 7 \mathrm{~cm} \\
\mathrm{r} & =7 \mathrm{~cm}
\end{aligned}
$$

ii. To find the circumference; use the formula

$$
\begin{aligned}
\mathrm{C} & =2 \mathrm{mr} \text { and put } \mathrm{r}=7 \mathrm{~cm}, \\
\mathrm{C} & =2 \times \frac{22}{7} \times 7 \mathrm{~cm} \\
& =44 \mathrm{~cm}
\end{aligned}
$$

Therefore, the circumference of the circle is 44 cm .
Example 33. What is the radius of a circle whose curcumfierence is $48 \pi \mathrm{~cm}$.

Solution:

$$
\begin{gathered}
C=2 \pi r \\
48 \pi=2 \pi r
\end{gathered}
$$

Then $r=\frac{48 \pi}{2 \pi}=24 \mathrm{~cm}$
Therefore, the radius of the circle is 24 cm .

Exercise 5L

1. Find the area of a semicircle whose radius is 2.4 cm .
2. Find the area of a circle if $\mathrm{x}=12$ and $\mathrm{y}=3$, see Figure 5.109 to the right.

Figure 5.109
3. A square is cut out from a circle as shown in Figure 5.110 to the right, If the radius of the circle is 6 cm , what is the total area of the shaded region?

Figure 5.110
4. As shown in Figure 5.111 to the right if the two small semicircles, each of radius 1 unit with centres O^{\prime} and $\mathrm{O}^{\prime \prime}$ are contained in the bigger semi-circle with center O, So that $\mathrm{O}^{\prime}, \mathrm{O}$ and $\mathrm{O}^{\prime \prime}$ are on the same line, then what is the area of the shaded part?

Figure 5.111
5. How many square meters of brick pavement must be laid for a 4 meter wide walk around a circular flower bed 22 meters in diameter?
6. If the radius of a circle is twice the radius of another circle, then find the ratio of the areas of the larger circle to the smaller circle.
7. Find the radius of the circle if its area is:
a. $144 \pi \mathrm{~cm}^{2}$
b. $324 \pi \mathrm{~cm}^{2}$
C. $625 \pi \mathrm{~cm}^{2}$
d. $\frac{1}{81} \pi \mathrm{~cm}^{2}$
8. Find the diameter of a circle if its area is:
a. $100 \pi \mathrm{~cm}^{2}$
b. $16 \pi \mathrm{~cm}^{2}$
c. $400 \pi \mathrm{~cm}^{2}$
d. $\frac{1}{4} \pi \mathrm{~cm}^{2}$

Challenge Problem

9. In Figure 5.112 the radius of the bigger circle is 9 cm , and the area of the shaded region is twice that of the smaller circle, then how long is the radius of the smaller circle?

Figure 5.112
10. Two concentric circles (circles with the same centre) have radii of 6 cm and 3 cm respectively. Find the area of the annulus (the shaded region). (use $\pi=3.13$)

Figure 5.113

5.3.6. Surface Area of Prisms and Cylinder

Group work 5.6

Discuss with your friends.

1. What are the properties of a rectangular prism?
2. How many vertices, lateral edge and lateral faces does a rectangular prism have?
3. Explain why a cube is also a rectangular prism.
4. In Figure 5.114 to the right shows a triangular prism
a. Use a ruler to construct a net of the solid on plain paper.
b. Cut out the net and fold it to make the solid.

Figure 5.114
5. A, B, C, and D are four solid shapes. E, F, G, and H are four nets. Match the shapes to the nets, (see Figure 5.115).

Figure 5.115

In grade 5 and 6 mathematics lesson you learnt how to compute the volume of a rectangular prisms. In this sub-section you will become more acquainted with these most familiar geometric solids and you will learn how to compute their surface area in a more detailed and systematic ways.

Prisms

A prism is a solid figure that has two parallel and congruent bases. Depending on the shape of its base a prism can be triangular, rectangular and soon.

Pentagonal prism (the bases are pentagons)

A prism has two bases: upper base and lower base. The edges of a prism are the line segments that bound the prism. Consider the rectangular prism shown in Figure 5.117 to the right.
\checkmark The rectangular region ABCD is the upper base and rectangle EFGH is the lower base.
\checkmark The line segments $\overline{\mathrm{AB}}, \overline{\mathrm{BC}}, \overline{\mathrm{CD}}, \overline{\mathrm{DA}}$, $\overline{\mathrm{EF}}, \overline{\mathrm{FG}}, \overline{\mathrm{GH}}$ and $\overline{\mathrm{HE}}$ are edges of the bases where as $\overline{\mathrm{AE}}, \overline{\mathrm{BF}}, \overline{\mathrm{CG}}$ and $\overline{\mathrm{DH}}$ are

Figure 5.117 rectangular prism the lateral edges of the prism.
\checkmark The rectangles ABFE, BCGF, CDHG and ADHE are called the lateral faces of the prism.

Lateral Surface area of a prism

\checkmark The lateral surface area is the sum of the areas of all lateral faces; denoted by A_{S}.

$$
\begin{aligned}
\mathrm{A}_{\mathrm{S}} & =\mathrm{a}(\mathrm{ABFE})+\mathrm{a}(\mathrm{BCGF})+\mathrm{a}(\mathrm{CDHG})+\mathrm{a}(\mathrm{ADHE}) \\
& =\mathrm{wh}+\ell \mathrm{h}+\mathrm{wh}+\ell \mathrm{h} \\
& =2 \ell \mathrm{~h}+2 \mathrm{wh} \\
& =2 \mathrm{~h}(\ell+\mathrm{w}) \\
& =\mathrm{ph} \ldots \text { Where } \mathrm{p} \Rightarrow \text { Perimeter of the base }
\end{aligned}
$$

5 Geometric Figures and Mensurement

Total surface area of a prism

A rectanglular prism has six faces: two bases and four lateral faces.
Total surface area $=$ area of the two bases + area of the four lateral faces.

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{T}}= \mathrm{a}(\mathrm{ABCD})+\mathrm{a}(\mathrm{EFGH})+\mathrm{a}(\mathrm{ABFE})+\mathrm{a}(\mathrm{BCGF})+ \\
& \quad \mathrm{a}(\mathrm{CDHG})+\mathrm{a}(\mathrm{ADHE}) \\
& \mathrm{A}_{\mathrm{T}}=\ell \mathrm{W}+\ell \mathrm{W}+\mathrm{wh}+\ell \mathrm{h}+\mathrm{wh}+\ell \mathrm{h} \\
& \mathrm{~A}_{\mathrm{T}}=2 \ell \mathrm{~W}+2 \mathrm{wh}+2 \ell \mathrm{~h} \\
& \mathrm{~A}_{\mathrm{T}}=2(\ell \mathrm{~W}+\mathrm{wh}+\ell \mathrm{h})
\end{aligned}
$$

Note: The total surface area is the sum of the areas of all the faces, denoted by A_{T}.
? What is a net?
Definition 5.17: A net is a pattern of shapes on a piece of paper or card. The shapes are arranged so that the net can be folded to make a hollow solid.
\checkmark To derive a formula for the surface area of a right prism, we can use the net of the prism. For example consider a rectangular prism in Figure 5.118 below.

Rectangular prism

would make

Net

Figure 5.118
The surface of a rectangular prism consists of six rectangles. Pair wise these faces or rectangles have equal size, i.e. the front and the back, the right side and the left side and the top and the bottom are rectangles having the sam size.

Thus
\checkmark Area of front face $=$ Area of back face $=\ell \mathrm{h}$
\checkmark Area of left face $=$ Area of right face $=w h$
\checkmark Area of top face $=$ Area of bottom face $=\ell_{\mathrm{W}}$
The lateral surface area is the sum of the areas of all lateral faces, i.e. lateral surfaces area $\left(A_{S}\right)=$ the sum of the areas of all lateral faces.

$$
\begin{aligned}
\text { or } \mathrm{A}_{S}= & \text { Area of front face }+ \text { Area of back face }+ \text { Area of left face }+ \\
& \text { area of right face. } \\
& =\ell \mathrm{h}+\ell \mathrm{h}+\mathrm{wh}+\mathrm{wh} . \\
& =2 \ell \mathrm{~h}+2 \mathrm{wh} . \\
& =2 \mathrm{~h}(\ell+w) \\
& =\mathrm{ph} \ldots \ldots . . \text { where } \mathrm{p}=\text { Perimeter of the base. }
\end{aligned}
$$

Total surface area $\left(\mathrm{A}_{T}\right)=\mathrm{A}_{S}+$ area of two bases.

$$
\begin{aligned}
& =2 \ell \mathrm{~h}+2 \mathrm{wh}+2 \ell \mathrm{~h} . \\
& =\mathrm{A}_{\mathrm{S}}+2 \mathrm{~A}_{\mathrm{B}} \ldots \ldots . \text { Where } \mathrm{A}_{\mathrm{B}}=\text { Area of the base. }
\end{aligned}
$$

Example34. Find the surface area (Total surface area) of the following right rectangular prism.

Method I

Solution:

Fig 5.119 Rectangular prism

First find the lateral surface area:

$$
\begin{aligned}
\mathrm{A}_{S} & =\text { ABFE }+\mathrm{BCGF}+\mathrm{CDHG}+\text { ADHE } \\
& =(5 \mathrm{~cm} \times 3 \mathrm{~cm})+(5 \mathrm{~cm} \times 4 \mathrm{~cm})+(5 \mathrm{~cm} \times 3 \mathrm{~cm})+(5 \mathrm{~cm} \times 4 \mathrm{~cm}) \\
& =15 \mathrm{~cm}^{2}+20 \mathrm{~cm}^{2}+15 \mathrm{~cm}^{2}+20 \mathrm{~cm}^{2} \\
& =70 \mathrm{~cm}^{2}
\end{aligned}
$$

Next find the base area:

$$
\begin{aligned}
\mathrm{A}_{\mathrm{B}} & =\mathrm{EFGH}+\mathrm{ABCD} \\
& =4 \mathrm{~cm} \times 3 \mathrm{~cm}+4 \mathrm{~cm} \times 3 \mathrm{~cm} \\
& =12 \mathrm{~cm}^{2}+12 \mathrm{~cm}^{2} \\
& =24 \mathrm{~cm}^{2}
\end{aligned}
$$

Therefore, total surface area $\left(\mathrm{A}_{T}\right)=\mathrm{A}_{S}+2 \mathrm{~A}_{B}$

$$
\begin{aligned}
& =70 \mathrm{~cm}^{2}+24 \mathrm{~cm}^{2} \\
& =94 \mathrm{~cm}^{2}
\end{aligned}
$$

Method II

$$
\begin{aligned}
\mathrm{A}_{S} & =2 \mathrm{~h}(\ell+\mathrm{w}) \\
\mathrm{A}_{S} & =2 \times 5 \mathrm{~cm}(4 \mathrm{~cm}+3 \mathrm{~cm}) \\
\mathrm{A}_{S} & =10 \mathrm{~cm}(7 \mathrm{~cm}) \\
\mathrm{A}_{S} & =70 \mathrm{~cm}^{2} \\
\mathrm{~A}_{\mathrm{T}} & =2(\ell \mathrm{~W}+\mathrm{wh}+\ell \mathrm{h}) \\
& =2(4 \mathrm{~cm} \times 3 \mathrm{~cm}+3 \mathrm{~cm} \times 5 \mathrm{~cm}+4 \mathrm{~cm} \times 5 \mathrm{~cm}) \\
& =2\left(12 \mathrm{~cm}^{2}+15 \mathrm{~cm}^{2}+20 \mathrm{~cm}^{2}\right) \\
& =2\left(47 \mathrm{~cm}^{2}\right) \\
& =94 \mathrm{~cm}^{2}
\end{aligned}
$$

Therefore in both cases (method I and II) we have the same lateral surface area and total surface area, you can use either method I or II but the final answer does not change.

Example 35. Find the surface area(Total surface area) of the following right Triangular prism in which the base is right angled triangle.

Solution:

First find the lateral surface area:
Each base of the prism is a right triangle with hypotenuse 5 cm and legs of 3 cm and 4 cm . Then

$$
\begin{aligned}
\mathrm{A}_{S} & =\mathrm{AA}^{\prime} \mathrm{C}^{\prime} \mathrm{C}+\mathrm{C}^{\prime} \mathrm{CBB}+\mathrm{AA}{ }^{\prime} \mathrm{B}^{\prime} \mathrm{B} \\
& =3 \mathrm{~cm} \times 6 \mathrm{~cm}+4 \mathrm{~cm} \times 6 \mathrm{~cm}+5 \mathrm{~cm} \times 6 \mathrm{~cm} \\
& =18 \mathrm{~cm}^{2}+24 \mathrm{~cm}^{2}+30 \mathrm{~cm}^{2} \\
& =72 \mathrm{~cm}^{2} \text { or As }=\mathrm{Ph} \\
\text { As } & =\left(3 \mathrm{~cm}^{2}+4+5\right)^{\mathrm{b}} \\
\text { As } & =72 \mathrm{~cm}^{2}
\end{aligned}
$$

Next find the base area:

$$
\begin{aligned}
2 \mathrm{~A}_{\mathrm{B}} & =\mathrm{a}(\Delta \mathrm{ABC})+\mathrm{a}\left(\Delta \mathrm{~A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}\right) \\
& =\frac{1}{2}(3 \mathrm{~cm} \times 4 \mathrm{~cm})+\frac{1}{2}(3 \mathrm{~cm} \times 4 \mathrm{~cm}) \\
& =\frac{1}{2}\left(12 \mathrm{~cm}^{2}\right)+\frac{1}{2}\left(12 \mathrm{~cm}^{2}\right) \\
& =6 \mathrm{~cm}^{2}+6 \mathrm{~cm}^{2} \\
& =12 \mathrm{~cm}^{2}
\end{aligned}
$$

Therefore, total surface area $\left(\mathrm{A}_{T}\right)=\mathrm{A}_{S}+2 \mathrm{~A}_{\mathrm{B}}$

$$
\begin{aligned}
& =72 \mathrm{~cm}^{2}+12 \mathrm{~cm}^{2} \\
& =84 \mathrm{~cm}^{2}
\end{aligned}
$$

Cylinders

Definition 5.18: A cylinder is defined as a solid figure whose upper and lower bases are congruent simple closed curves lying on parallel planes.

Figure 5.121

Definition 5.19: A right circular cylinder is a cylinder in which the bases are circles and the planes of the bases are perpendicular to the line joining the corresponding points of the bases.

Figure 5.122

Properties of right circular cylinder

1. The upper and the lower bases are congruent (circles of equal radii).
2. The bases lie on paralle/ planes.
3. A line through the centers of the bases is perpendicular to the diameter of the bases.

Lateral Surface Area of a Cylinder

To calculate the lateral surface area of a circular cylinder, consider a circular cylinder wich is made up of paper. Let us detach the upper and the lower bases, and slit down the side of the cylinder as shown in Figure 5.123 below.

Lateral surface

a.
b.

Figure 5.123
The upper and lower bases of the cylinder are parallel and congruent. Therefore, they have equal area: $\mathbf{A}_{\mathbf{B}}=\pi r^{2}$. If the upper and the lower bases are detached, then you get a rectangle whose length is $2 \pi r$ and height \mathbf{h} which is the height of the cylinder.
Therefore, the lateral surface area $\left(\mathrm{A}_{S}\right)=2 \pi \mathrm{rh}$ or $\mathrm{As}=\mathrm{Ph}, \mathrm{P}=\mathrm{C}$

$$
\begin{aligned}
& \text { As }=\mathbf{C h} \\
& \text { As }=2 \pi \mathrm{rh}
\end{aligned}
$$

In general, for any circular cylinder,

1. The area of the bases: $2 A_{B}=2 \pi r^{2}$.
2. The area of the lateral surface $\left(\mathrm{A}_{S}\right)=2 \pi \mathrm{rh}$.
3. The total surface area of the cylinder whose base radius r is:

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{T}}=2 \mathrm{~A}_{\mathrm{B}}+\mathrm{A}_{S} \\
& \mathrm{~A}_{\mathrm{T}}=2 \pi \mathrm{r}^{2}+2 \pi \mathrm{rh} \\
& \mathrm{~A}_{\mathrm{T}}=2 \pi \mathrm{r}(\mathrm{r}+\mathrm{h})
\end{aligned}
$$

Example 36. The radius of the base of a right circular cylinder is 4 cm and its height is 6 cm . Find the total surface area of the cylinder in terms of π.

Solution:

See Figure 5.124.
$\mathrm{A}_{S}=2 \pi \mathrm{rh}$
$A_{S}=2 \pi(4 \mathrm{~cm} \times 6 \mathrm{~cm})$
$\mathrm{A}_{\mathrm{S}}=48 \pi \mathrm{~cm}^{2}$
Therefore, the lateral surface area is $48 \pi \mathrm{~cm}^{2}$ $2($ Base area $)=2 \pi r^{2}$

Figure 5.124 cylinder

$$
\begin{aligned}
2 \mathrm{~A}_{\mathrm{B}} & =2 \pi(4 \mathrm{~cm})^{2} \\
& =32 \pi \mathrm{~cm}^{2} \text { Total surface area }\left(\mathrm{A}_{\mathrm{T}}\right) \\
& =\mathrm{A}_{S}+2 \mathrm{~A}_{\mathrm{B}} \\
& =(48 \pi+32 \pi) \mathrm{cm}^{2} \\
& =80 \pi \mathrm{~cm}^{2}
\end{aligned}
$$

Therefore, the total surface area of the cylinder is $80 \pi \mathrm{~cm}^{2}$
Example 37. The sum of the height and radius of a right circular cylinder is 9 m . The surface area of the cylinder is $54 \mathrm{~mm}^{2}$. Find the height and the radius.

Solution:

Let the height of the cylinder be h and the radius of the base be r
This implies, $\mathrm{h}+\mathrm{r}=9 \mathrm{~m}$

$$
\mathrm{h}=9-\mathrm{r}
$$

$A_{T}=54 m^{2} \ldots \ldots \ldots \ldots .$. Given
$A_{T}=2 \pi r h+2 \pi r^{2} \ldots$. Given formula
$54 \pi=2 \pi r(9-r)+2 \pi r^{2} \ldots .$. Substitute h by $9-r$ as h $=9-r$
$54 \pi=18 \pi r-2 \pi r^{2}+2 \pi r^{2}$
$54 \pi=18 \pi r$
$r=3 m$
Therefore, the radius of the cylinder is 3 m .
Thus $\mathrm{h}=9-\mathrm{r}$
$h=9 m-3 m$
$\mathrm{h}=6 \mathrm{~m}$
Therefore, the height of the cylinder is 6 m .

Exercise 5M

1. If the edge of a cube is 4 cm , then find:
a. its lateral surface area.
b. its total surface area.
2. A closed cardboard box is a cuboid with a base of 63 cm by 25 cm . The box is 30 cm heigh, calculate the total surface area of the box.
3. The lateral surface area of a right circular cylinder is $120 \mathrm{~cm}^{2}$ and the circumference of the bases is 12 cm . Find the altitude of the cylinder.
4. The total surface area of a right circular cylinder is $84 \pi \mathrm{~cm}^{2}$ and the altitude is 11 cm . Find the radius of the base.

Challence Problem

5. In Figure 5.125 to the right find:
a. Lateral surface area
b. Total surface area

5.3.7. Volumes of prism and cylinder

Figure 5.125

Group Work 5.7

1. A box in the shape of a cuboid has a volume of $50 \mathrm{~cm}^{3}$. It has a length of 8 cm and a height of 2.5 cm . What is its width.
2. A right circular cylinder has a height of 20 cm and a diameter of 6 cm . what is its volume?
3. A right triangular prism has height 12 cm and volume $60 \mathrm{~cm}^{3}$. What is the area of the triangular bases?
In Grade 5 and 6 mathematics lesson you learnt how to compute the volume of prisms. In this lesson you will learn how to compute the volume in a more detailed and systematic ways.

The volume of a solid geometric figure is a measure of the amount of space it occupies. Most commonly used units of volume are cubic centimeters $\left(\mathrm{cm}^{3}\right)$ and cubic metres $\left(\mathrm{m}^{3}\right)$.

Volume of Prism

1. The volume (V) of a rectangular prism equals the product of its length (ℓ), width (w) and height (h). That is, volume of rectangular prism
$=$ length \times width \times height
Volume: $\mathrm{V}=\ell \times \mathrm{w} \times \mathrm{h}$
2. In a cube the length, width and height are all the same size. So the formula for the volume is:

$$
\text { Volume of a cube }=\text { length } \times \text { length } \times \text { length }
$$

$$
\begin{aligned}
& =\ell \times \ell \times \ell \\
& =\ell^{3}
\end{aligned}
$$

Fig 5.126 Rectangular prism

Figure 5.127 cube
3. The Volume (V) of a right triangular prism equals the product of its base area and its height. That is, volume of a right triangular prism $=$ Base Area \times height.
Volume: $V=A_{B} \times h$
4. The volume of any prism equales the product of its base area and altitude. That is,

$$
\begin{gathered}
\mathrm{V}=\mathrm{A}_{\mathrm{B}} \mathrm{~h} \text { where } \mathrm{A}_{\mathrm{B}}=\text { base area and } \\
\mathrm{h}=\text { height }
\end{gathered}
$$

Example 38. Shown in Figure 5.129 to the right. Find the volume of the rectangular prism.

Solution:

$$
\begin{aligned}
\mathrm{V} & =\mathrm{A}_{\mathrm{B}} \mathrm{~h} \\
& =(24 \mathrm{~cm} \times 20 \mathrm{~cm}) \times 10 \mathrm{~cm} \\
& =4800 \mathrm{~cm}^{3}
\end{aligned}
$$

Figure 5.128 Triangular prism

Figure 5.129 Rectangular prism

Therefore, the volume of the rectangular prism is $4800 \mathrm{~cm}^{3}$.
Example 39. Find the volume of the triangular prism, Shown in Figure 5.130 below.

Solution:

$$
\mathrm{V}=\mathrm{A}_{\mathrm{B}} \mathrm{~h}
$$

But the area of the base is

$$
\begin{aligned}
\mathrm{A}_{\mathrm{B}} & =\frac{1}{2} \mathrm{ab} \\
& =\frac{1}{2}(4 \mathrm{~cm} \times 3 \mathrm{~cm})=6 \mathrm{~cm}^{2} \\
\text { Hence } \mathrm{V} & =6 \mathrm{~cm}^{2} \times 8 \mathrm{~cm} \\
V & =48 \mathrm{~cm}^{3}
\end{aligned}
$$

Figure 5.130 Rectangular prism

Therefore, the volume of the triangular prism is $48 \mathrm{~cm}^{3}$.

Volume of Cylinder

A circular cylinder is a special prism where the base is a circle. The area of the base with radius r is πr^{2}, so its volume $V=$ area of the base \times height

$$
\mathrm{V}=\pi \mathrm{r}^{2} \times \mathrm{h}=\pi \mathrm{r}^{2} \mathrm{~h} .
$$

Volume of a cylinder $=$ base area \times height
Volume: $V=A_{B} h$

$$
V=\pi r^{2} h
$$

Figure 5.131

Example 40. Find the volume of a circular cylinder shown in Figure 5.132 below. Leave your answer interms of π.

Solution:

$$
\begin{aligned}
& \mathrm{V}=\pi \mathrm{r}^{2} \mathrm{~h} \\
& \mathrm{~V}=\pi(3 \mathrm{~cm})^{2} \times(8 \mathrm{~cm}) \\
& \mathrm{V}=72 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Therefore, the volume of the cylinder is $72 \pi \mathrm{~cm}^{3}$.

Figure 5.132

Example 41. The volume of a circular cylinder is $48 \pi \mathrm{~cm}^{3}$. Find the height of this cylinder, if its base radius is 2 cm .

Solution:

$$
\begin{aligned}
\mathrm{V} & =48 \pi \mathrm{~cm}^{3} \\
\mathrm{r} & =2 \mathrm{~cm} \\
\mathrm{~V} & =\pi \mathrm{r}^{2} \mathrm{~h} \\
\text { Then } \mathrm{h} & =\frac{\mathrm{V}}{\pi \mathrm{r}^{2}} \\
\mathrm{~h} & =\frac{48 \pi}{\pi(2)^{2}}=\frac{48 \pi}{4 \pi}=12
\end{aligned}
$$

Therefore, the height of the cylinder is 12 cm .

Exercise 5 N

1. The container in Figure 5.133 is made from a circular cylinder and a cube. The height of the cylinder is 20 cm and its base ralius is 8 cm . The cube has sides of 16 cm .
a. Calculate the volume in cm^{3}, of the cylinder.
b. Calculate the total volume in cm^{3} of the container.

Figure 5.133
2. The volume of a triangular prism is $204 \mathrm{~cm}^{3}$. If its height is 24 cm , then find the area of its base.
3. Calculate the volume of the triangular prism Given in Figure 5.134 to the right .

Figure 5.134 Triangular prism
4. Find the volumes of these solids.

Figure 5.135

Sunnminaz포 Fow unnit 5

1. In general quadrilateral can be classified as follows:

2. Aquadrilateral is a four-sided geometric figure boundad by line segments.
3. Table 5.4

Name	shape	Properties
Parallelogr am		- Opposite sides are congruent. - Opposite angles are congrunet. - The diagonals bisect each other. - Two consecutive angles are supplementary. - Opposite sides are parallel.
Rectangle		Both pairs of opposite sides are parallel. All angles are right angles. The diagonâls are congruent. Both pairs of opposite sides are congruent.
Rhombus		All sides are congruent. The diagonals cut at right angles. The angles are bisected by the diagonals. Both pairs of opposite sides are paralles. Opposite angles are congrunet.
Square		All sides are congruent. All angles are right angles. The diagonals are equal and bisect each other at right angle. Each diagonal of a square makes an angle of 45° with each side of the square. Both pairs of opposite sides are parallel.

4. A polygon is a simple closed path in a plane which is entirely made up of a line segment joined end to end.
5. A convex polygon is a simple polygon in which each of the interior angles measure lessthan 180°.
6. A concave polygon is a simple polygon which has at least one interior angle of measure greater than 180°.
7. A diagonal of a convex polygon is a line segment whose end points are non - consecutive vertices of the polygon.
8. A circle is the set of all points in a plane that are equidistant from a fixed point called the center of the circle.
9. A chord of a circle is a linesegment whose end points are on the circle.
10. A diameter of a circle is any chord that passes through the center and denoted by ' d '.
11. A radius of a circle is a linesegment that has the center as one end point and a point on the circle as the other end point and denoted by ' r '.
12. The formula for the number of triangle, (T) determined by diagonals drawn from one vertex of a polygon of n sides is $T=n-2$.
13. A polygon which is both equilateral and equiangular is called a regular polygon.
14. The sum S of the measures of all the interior angles of a polygon of an sides is given by $S=(n-2) 180^{\circ}$.
15. The measure of each interior angle of n-sided regular polygon is $\frac{(\mathrm{n}-2) 180^{\circ}}{\mathrm{n}}$.
16. Table 5.5

5 Qeometric Figures and Mensurement

Triangle		$A=\frac{1}{2} \mathrm{bh}$	$\mathrm{P}=\mathrm{a}+\mathrm{b}+\mathrm{c}$
Paralle logram		$\mathrm{A}=\mathrm{bh}$	$P=2(a+b)$
Trapezium		$A=\frac{h}{2}\left(b_{1}+b_{2}\right)$	$P=a+b_{1}+c+b_{2}$
Circle		$\begin{aligned} \mathrm{A} & =\pi r^{2} \\ & =\pi\left(\frac{d}{2}\right)^{2} \\ & =\frac{\pi d^{2}}{4} \end{aligned}$	$\begin{aligned} C & =2 \pi r \\ & =\pi d \end{aligned}$

17. A geometric solid figure is said to be right prism, if the parallel planes containing the upper and lower bases and any line on the lateral edge makes right angle with the edge of the base.
18. A net is a pattern of shapes (rectangles, triangles, circles or any shapes) on a piece of paper (or card) and when correctly folded gives a model of solid figure
19. A right circular cylinder is a cylinder in which the bases are circles and aline through the two centers is perpendicular to radius of the bases.
20. Table 5.6 Here $A_{S}=$ area of lateral surface; $A_{B}=$ Base area, $P=$ perimeter of the base and $A_{T}=$ Total surface Area.

5 Qeometric figures and Mensurement

Name	Shape	Area	Volume
Triangular prism		$\begin{aligned} A_{S} & =2 h(\ell+w) \\ & =p h \\ A_{T} & =A_{S}+2 A_{B} \\ A_{T} & =P h+2 A_{B} \end{aligned}$	$\mathrm{V}=\mathrm{A}_{\mathrm{B}} \mathrm{h}$
Rectangular prism		$\begin{gathered} A_{S}=2 h(\ell+w) \\ =P h \\ A_{T}=2(\ell w+w h+\ell h) \\ \text { Or } A_{T}=A_{S}+2 A_{B} \\ A_{T}=P h+2 A_{B} \end{gathered}$	$V=A_{B} h$
Cube		$\begin{aligned} & \mathrm{A}_{S}=4 \ell^{2} \\ & \mathrm{~A}_{\mathrm{T}}=6 \ell^{2} \end{aligned}$	$V=e^{3}$
Circular Cylinder		$\begin{aligned} & A_{S}=2 \pi r h \\ & A_{T}=2 \pi r(r+h) \end{aligned}$	$\begin{aligned} & V=A_{B} h \\ & =\pi r^{2} h \end{aligned}$

21.

Figure 5.136

Miscellameous EXERCISE 5

I. Write true for the correct statements and false for the incorrect ones.

1. Every rectangle is asquare.
2. Every rhombus is a rectangle.
3. Atrapzium is a parallelogram.
4. The diagonal of a parallelogram divides the parallelogram in to congruent triangles.
5. Every square is a rectangle.
6. The angles of a rectangle are congruent.
7. All the sides of a parallelogram are congruent.
II. Choose the correct answer from the given four alternatives.
8. In Figure 5.137 below the two lines ℓ_{1} and ℓ_{2} are parallel where t_{1} and t_{2} are transuersal lines. What is the measure of the angle marked z ?

9. The sum of the measures of the interior angles of a polygon is 900°. How many sides does the polygon have?
a. 5
b. 6
c. 7
d. 8
10. If the sum of the three angles of a quadrilateral is equal to $1 \frac{1}{2}$ times the sum of the three angles of a triangle, what is the measure of the fourth angle of the quadrilateral?
a. 90°
b. 60°
c. 45°
d. 30°
11. Which of the following plane figures have always a perpendicular diagonals?
a. Rectangle
c. Rhombus
b. Trapezium
d. parallelogram
12. The angles of a triangle are in the ratio of 2:3:5. What is the size of the largest angle in degrees?
a. 90°
b. 110°
c. 45°
d. 72°
13. Which of the following statements is not true?
a. The diagonal of a rectangle is longer than any of its sides.
b. If a parallelogram has equal diagonals, then it is a square.
c. The diagonals of a rhombus divide the rhombus in to four right angled triangles of equal area.
d. Diagonals of a parallelogram bisect each other.
14. $2 x, 3 x, 4 x, 11 x$ and $7 x$ are measures of the interior angles of five sided convex plygon, what is the measure of the largest angle in degrees?
a. 200
b. 270
c. 366
d. 220
15. In Figure 5.138 below, the value of x is:
a. 60°
b. 40°
c. 50°
d. 65°

Figure 5.138
9. In Figure 5.139 below, which one of the following is false?
a. $x=36^{\circ}$
b. $y=152^{\circ}$
c. $w=2 x$
d. $k=144^{\circ}$

Figure 5.139

5 Qeometric Figures and Measurement

10. In Figure 5.140 below, if $\overline{\mathrm{PQ}}$ and $\overline{\mathrm{SR}}$ are parallel lines, then which one of the following is false.

a. $\mathrm{m}(\angle \mathrm{PSR})=113^{\circ}$
b. $m(\angle Q R S)=142^{\circ}$
c. $m(\angle P Q R)=38^{\circ}$
d. $m(\angle P S R)=38^{\circ}$
11. In Figure 5.141, the value of \mathbf{n} is:
a. 57.5°
b. 65°
c. 50°
d. 130°

Figure 5.141
12. Which expression describes the area of the shaded region?
a. $\pi(R+r)(R-r)$
b. $\pi R^{2}-\pi r^{2}$
c. $\pi\left(R^{2}-r^{2}\right)$
d. all are correct

Figure 5.142
13. What is the total surface area of a right triangular prism whose altitude is 15 cm long and whose base is a right angled triangular with lengths of sides $6 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm ?
a. $360 \mathrm{~cm}^{2}$
b. $408 \mathrm{~cm}^{2}$
c. $420 \mathrm{~cm}^{2}$
d. $440 \mathrm{~cm}^{2}$
14. The altitude and the radius of the base of a right circular cylinder are equal. If the lateral surface area of the cylinder is $72 \pi \mathrm{~cm}^{2}$, then the length of the altitude is:
a. $2 \sqrt{9} \mathrm{~cm}$
b. $6 \sqrt{2} \mathrm{~cm}$
c. 6 cm
d. $\mathbf{3 6} \mathrm{cm}$
III. Work out problems
15. Trace all these shapes:

Figure 5.143
16. Draw all the diagonals in each shape. (Make sure each vertex is joined to every other vertex) (use Figure 1.143).
17. Copy this Table 5.7 and fill it in for each shape. (use Figures 5.143)

	Name	Number of sides	Number of vertices	Number of diagonals
a				
b				
c				
d				

18. In Figure 5.144, of $\triangle A B C$, where $m(\angle C)=30^{\circ}, m(\angle A B D)=5 x$, $m(\angle A)=4 x$. Find $m(\angle A B C)$ in degrees.

Figure 5.144
19. The measure of each interior angle of a regular polygon with \mathbf{n} sides is given by the formula: $\left(\frac{2 n-4}{n}\right) \times 90^{\circ}$.
Calculate the measure of each interior angle of a regular polygon with
a. 30 sides
b. 45 sides
c. 90 sides

20 In Figure 5.145 below, find $m(\angle D B C)$ and $m(\angle C A D)$.

Figure 5.145
21 In Figure 5.146, $m(\angle D)=112^{\circ}, \overline{\mathrm{DA}}$ bisects ($\angle C A B), \overline{D B}$ bisects ($\angle C B A$). Find $m(\angle C)$.

Figure 5.146
22 The base of a right prism is an equilateral triangle each of whose sides measures 4 cm . The altitude of the prism measures 5 cm . Find the volume of the prism.
23 The circumference of a circle is 60 cm . Calculate:
a. the radius of the circle.
b. the area of the circle.

24 The volume of a right circular cylinder is $1540 \mathrm{~cm}^{3}$ and its altitude is 10 cm long. What is the length of the radius of the base? (Take $\pi=\frac{22}{7}$)
25 Find the height of a right circular cylinder whose volume is $75 \mathrm{~cm}^{3}$ and base radius is $\frac{50}{2} \mathrm{~mm}$.

