Mathematics

Grade 8

Introduction

Mathematics involves observing, representing and investigating patterns and relationships in social and physical phenomena and between mathematical objects themselves. Mathematics learning should develop students' abilities to:-

- See the mathematics in situations and choose appropriate mathematics for these situations.
- Think creatively, critically, strategically and logically.
- Plan, investigate, make conjectures and decide on levels of accuracy.
- Reason inventively, analyse options and consider the consequences and implications of decisions.

The following table outlines suggestions how the principles of effective learning and teaching can be incorporated into the learning of mathematics at grade 8 level in ways which take account of the students' current stages of development.

Principles of Learning	Strategies Teachers can use to Implement the Principles
Opportunity to learn Learning experiences should enable students to observe and practise the actual processes, products, skills and values which are expected of them.	- Use 'think - aloud' strategies to model mathematical processes and problem solving for students. - Provide opportunities for students to describe, explain or justify. - Provide opportunities for students to use mathematics in problem solving, pattern finding and decision making situations. - Provide opportunities for students to gain experience with the process of working mathematically. - Ensure students have the opportunities to develop confidence in applying mathematical skills in a variety of contexts.
Connection and Challenge Learning experiences should connect with students' existing knowledge, skills and values while extending and challenging their current ways of thinking and acting.	- Make links between the mathematics being taught and students' background knowledge and personal contexts. - Connect the mathematics being taught to students' learning in other curriculum areas. - Challenge students by requiring them to adopt Mathematics procedures to a range of different situations and contexts. - Provide access to ICT, illustrating mathematical potential and limitations to these. - Illustrate the way in which mathematics has been subject to challenge and change.
Action and Reflection Learning experiences should be meaningful and encourage both action and reflection on the part of the learner.	- Provide opportunities for students to discuss successful and unsuccessful mathematical strategies. - Provide opportunities for students to reflect on and discuss their progress in mathematics - Make mathematics assessment criteria explicit and create opportunities for self assessment.

Principles of Learning	Strategies Teachers can use to Implement the Principles
Motivation and Purpose Learning experiences should be motivating and their purpose clear to the student.	- Illustrate the real life applications and future uses of the mathematics that students are learning. - Connect learning in mathematics to students' lives and local environments. - Connect learning in mathematics to further education and career pathways.
Inclusivity and Purpose Learning experiences should respect and accommodate differences between learners.	- Design mathematical activities which cater for different learning styles, values, gender, abilities, interests, cultures, and family backgrounds. - Design Mathematical activities which take into account students' differing physical, mental and emotional development.
Independence and Collaboration Learning experiences should encourage students to learn both independently and from and with others.	- Design learning experiences that allow students some autonomy over how they learn and how they approach mathematics tasks. - Design learning experiences which allow students to work collaboratively with other students in mathematics.
Supportive Environment The school and classroom setting should be safe and conducive to effective learning.	- Build a safe classroom climate based on mutual respect and tolerance. - Encourage students to take appropriate risks in Mathematics. - Actively recognize achievement and progress in mathematics. - Treat mistakes as opportunities for learning, rather than signs of failure. - Promote school policies which support positive attitudes towards mathematics.

It is believed that at this early adolescence period students' progress significantly from concrete to abstract. The breadth and depth of mathematics content to be taught increases, with a broadened focus on the development and application of understandings. Early adolescent learners commence their journey into the world of universal ideas where they learn about the processes of discovery and the implications of change. They successfully complete activities focusing on problem solving.

Students at this grade level typically begin to move from reflecting on local and real world experiences to considering increasingly complex and abstract mathematical concepts and ideas. They value opportunities to explore new ideas in depth and commonly in cooperation with their peers.

Learning objectives for Grade 8

After completing grade 8 , students should be able to:-

- Simplify algebraic expressions.
- Solve real life problems using variables.
- Multiply binomial by monomial and binomial.
- Determine highest common factor of algebraic expressions.
- Solve linear equations and inequalities by using rules of transformation.
- Draw a line through the origin whose equation is given.
- Determine the equation of a line that contains points whose coordinates are given.
- Determine the squares and cubes of numbers.
- Determine square roots and cube roots of perfect squares and perfect cubes respectively.
- Extract approximate square roots of numbers by using the numerical table.
- Give the conditions for triangles to be similar.
- Apply the tests for similarity to check whether two given triangles are similar or not.
- Give the relationships that exist between lines and circles.
- Apply basic facts about central and inscribed angles and angles formed by intersecting chords to solve related problems.
- Identify certain, uncertain and impossible outcomes.
- Describe event, sample space and probability of simple events.
- Calculate probabilities of simple events.
- Understand basic concepts about right angled triangles
- Apply important theorems on right angled triangles to solve related problems.
- Have a knowledge of the basic principles of trigonometric ratios.
- Apply the trigonometric ratios for $30^{\circ}, 45^{\circ}$ and 60° to solve related problems
- Identify different parts of pyramids and cones.
- Prepare models of pyramids and cones.

Unit 1: Squares, square roots, cubes and cube roots (20 periods)
Unit Outcomes: Students will be able to:

- understand the notion square and square roots and cubes and cube roots
- determine the square roots of the perfect square numbers
- extract the approximate square roots of numbers by using the numerical table.
- determine cubes of numbers
- extract the cube roots of perfect cubes.

Competencies	Content	Teaching / Learning activities and Resources	Assessment
- extract the square root of a number by using square root table.	1.2.2 Using the square root table	\therefore The square root of 9 is 3 5 squared $=5 \times 5=25$ \therefore The square root of 25 is 5 - Lead students to conclude that finding the square roots of numbers is the reverse of finding square of a number. - Define the square root of a number as follows. if $y(y \geq 0)$ is the square of a non-negative number $x(x \geq 0)$, then x is called the square root of y. This can be written symbolically as $\mathrm{x}=\sqrt{Y}$ - Guide the student to use prime factorization to find the square root of perfect squares you may use examples like Find $\sqrt{196}$ $196=2 \times 2 \times 7 \times 7$ - Now arrange the factors so that 196 is a product of two identical sets of prime factors $\begin{aligned} 196 & =(2 \times 7) \times(2 \times 7) \\ \text { So } 196 & =14 \times 14=14^{2} \\ \therefore \sqrt{196} & =\sqrt{14^{2}}=14 \end{aligned}$ Remark: Table of squares and square roots should be included in the text books. - Explain the procedure, necessary for reading the root from numerical table. Example: To find $\sqrt{24.50}$ 1. Lead the students to find the number 24.50 from the square root table. 2. Guide the students to move on the raw of this number to left and read 4.9. These are the first two digits of the square root of 24.50 . 3. To get the third digit lead the students to start from 24.50 and move vertically upward and read 5 . Therefore, $\sqrt{24.50}=4.95$ - Let students be informed that if they cannot get the number	- Give questions on how to find square root of non-negative numbers from the table of squares - Ask students to give square root of a nonnegative number using table of square roots.

Mathematics: Grade 8

Competencies	Content	Teaching / Learning activities and Resources	Assessment
		factors. - Assist student to write the cube of a number with the symbol " $\sqrt[3]{ }$ " - $\sqrt[3]{8}$ read as "cube root of 8 " - Encourage students to find the cube root of perfect cube. Example 1. $\sqrt[3]{27}=\sqrt[3]{3 \times 3 \times 3}$ 2. $3 \sqrt{\frac{64}{125}}=3 \sqrt{\frac{4 \times 4 \times 4}{5 \times 5 \times 5}}=4 / 5$ - Assist students to do problems like Example: If the volume of a cube is $8 \mathrm{~cm}^{3}$. Find the length of its edge. \rightarrow To find the length of edge of a cube express 8 as a product of three identical factors and take one of the factors. $\sqrt[3]{8}=\sqrt[3]{2 \times 2 \times 2}=2 \mathrm{~cm}$ Therefore the length of each edge is 2 cm .	students understand and apply the symbol $(\sqrt[3]{ }) \text { for cube }$ root correctly

Unit 2: Further on working with variables (25 periods)
Unit Outcomes: Students will be able to:

- solve life related problems using variables
- multiply binomial by monomial and determine the product of binomials
- determine highest common factor of algebraic expressions.

Competencies	Content	Teaching / Learning activities and Resources	Assessment
Students will be able to: - use variables in expressing algebraic and geometric relations.	2. Further on working with variables 2.1 Further on algebraic terms and expressions (8 periods) 2.1.1 Use of variables in formula	- Revise the concept of variables, terms and expressions - Encourage students to discuss about the role of variables in mathematics with the help of examples. - Lead students to describe mathematical relations by means of variable. Examples: - The area of rectangle - Perimeter of a trapezium	- Ask students to change simple word problems in to mathematical expressions
- simplify algebraic expressions with and without brackets.	2.1.2 Variables, terms and expressions	- Revise the concepts like terms and unlike terms. - Guide students to simplify given expressions by collecting like terms. Example: Simplify $5 x+y-3 x+2 y$ $5 x$ and $3 x$ are like terms with $5 x-3 x=2 x$ y and 2 y are like terms with $y+2 y=3 y$ $5 x+y-3 x+2 y=2 x+3 y$	- Give exercises on simplification of algebraic expressions involving brackets
- solve life related problems using variables	2.1.3 Use of variables to solve problems	- Assist students to solve life related problems using variables. Example: Three children share 3600 Birr. If two get the same amount and the other gets 600 Birr more. Find the share of each. Let the share of one of the two children be x, then the share of the third child is $x+600$. $\text { then } \begin{aligned} x+x+(x+600) & =3600 \\ 3 x+600 & =3600 \\ 3 x+600-600 & =3600-600 \\ 3 x & =3000 \\ \frac{3 x}{3} & =\frac{3000}{3} \end{aligned}$	- Give exercises on problems from real life that can be expressed using variables.

Mathematics: Grade 8

Mathematics: Grade 8

Competencies	Content	Teaching / Learning activities and Resources	Assessment
		$\text { 2) } \begin{gathered} a x+a y, b x+b y \\ a x+a y=a(x+y) \\ \text { and } b x+b y=b(x+y) \\ \text { HCF }=x+y \end{gathered}$ 3) Factorize $x^{2}-3 x$ The highest common factor of x^{2} and $3 x$ is x $\Rightarrow x^{2}-3 x=x(x-3)$	

Unit 3: Linear equation and inequalities (30 periods)

Unit Outcomes: Students will be able to:

- understand the concept equations and inequalities
- develop their skills on rearranging and solving linear equations and inequalities
- apply the rules of transformation of equations and inequalities for solving problems
- draw a line through the origin whose equation is given.

Competencies	Content	Teaching / Learning activities and Resources	Assessment
Students will be able to: - solve linear equations involving brackets using equivalent transformation	3. Linear equation and inequalities 3.1 Further on solutions of linear equations (10 periods) 3.1.1 Solutions of linear equations involving brackets	- Assist student to revise solving linear equations using equivalent transformation. - Using several examples discuss the following rules to remove brackets. $\begin{aligned} & -a+(b+c)=a+b+c \\ & -a-(b+c)=a-b-c \end{aligned}$ - Encourage your students to apply the above rules to solve linear equations, you may use examples like $\begin{aligned} & 2 x-(x+2)=1 \\ & 2 x-x-2=1---- \text { (Removing bracket) } \\ & x-2=1 \\ & x=3 \end{aligned}$ - Introduce the concept of "ordering and collection of like terms" in simplifying and solving linear equations. You can use examples like: eg. $\begin{aligned} & 3(2 x+1)=2 x+7 \\ & 6 x+3=2 x+7----- \text { removing bracket } \\ & 6 x-2 x=7-3------ \text { collecting like terms } \\ & 4 x=4 \\ & x=1 \end{aligned}$	- Give exercises on solving linear equations which involve brackets and check their answers.
- solve linear equations involving fractions	3.1.2 Solutions of linear equations involving fractions	- Start the lesson by revising the four fundamental operations on fraction - Motivate students to practise solving linear equations containing fractional coefficient of the variable. You may use examples like: 1. Solve: $\frac{3}{4} x-2=\frac{1}{2}$	- Ask your students to solve linear equations involving fractional coefficient of the variable.

Mathematics: Grade 8

Competencies	Content	Teaching / Learning activities and Resources	Assessment
		$\left(\frac{3}{4} \mathrm{x}-2\right) \times 4=\frac{1}{2} \times 4-\ldots$ (multiply both sides by LCM of the denominators) $3 x-8=2$---- Simplification $3 \mathrm{x}=10$ $\mathrm{x}=\frac{10}{3}$	
		$\begin{aligned} & \text { 2. Solve: } \quad \frac{2}{3} x+\frac{1}{2}=\frac{3 x-5}{6} \\ & \begin{aligned} \left(\frac{2}{3} x+\frac{1}{2}\right) \times 6 & =\left(\frac{3 x-5}{6}\right) \times 6 \\ 4 \mathrm{x}+3 & =3 \mathrm{x}-5 \\ \mathrm{x} & =-8 \end{aligned} \end{aligned}$	
- solve real life word problems using linear equations	3.1.3 Solve problems using linear equations	- Assist your students to go through the following steps in order to solve word problems using linear equations. 1. Understand the problem 2. List all the unknown quantities in the problems using variable (say x, y, z, a, b, etc) 3. Set up an equation which reflects the relationship between the given and the required quantities 4. Solve the equation 5. Check up the result 6. Answer the question in accordance with the problem - Encourage students to practice solving word problems from different fields of mathematics and daily life such as issues of production, taxation, banking and finance, investment, HIV/AIDS. etc.	- Give exercises on real life problem such as production, taxation, HIV/AID, etc.
- use the inequality signs \geq and \leq properly, to give solutions - solve linear	3.2 Further on Linear Inequalities (10 periods)	- Let students revise solving linear inequalities having variables with positive coefficients - After introducing the symbols " \leq " and " \geq ", assist students to solve inequalaities involving these signs. You may use examples like: "Solve the following inequalities where $x \in W$ 1. $\mathrm{x}+3>4$ 2. $x+3 \geq 4$	- Ask your students

Mathematics: Grade 8

Competencies	Content	Teaching / Learning activities and Resources	Assessment
- determine the equation that relates the coordinates in a given set of ordered pairs.		- Do the same thing, as suggested above, for vertical line, and assist students to come to the conclusion that $\mathrm{x}=\mathrm{b}$ where $b \in Q$ is an equation for a vertical line (or a line parallel to the Y axis) - Encourage students to draw a straight line whose equation is of the form $\mathrm{x}=\mathrm{b}$, where $\mathrm{b} \in \mathrm{Q}$ e.g. Draw the lines whose equations are a) $x=-3$ b) $x=5$ - After discussing the direct proportionality of two quantities X and Y assist students to draw a line whose equation is of the form $y=m x$ where $\mathrm{m} \in \mathrm{Q}$ by discussing the following steps: 1. Make table of values for easy x coordinates 2. Use the equation $y=m x$ (given $m \in Q$) to calculate the y-coordinate 3. Plot the points 4. Draw the lines through these points you may take examples like Draw the line whose equation is $y=3 x$	- After giving set of ordered pairs ask students to write equation that relates them (the ordered pairs are given in such a way that the required equation should be linear)

Mathematics: Grade 8

Competencies	Content	Teaching / Learning activities and Resources	Assessment
- determine the equation of a line that contains points whose coordinates are given.		- Encourage students to come to the conclusion that the line with equation of the form $Y=m x$ - passes through the origin - the number m is called the slope of the line - Let them observe the nature of the lines when $m>0$ and $m<0$ - Help students to write an equation for a line that contains points whose coordinates are given as list of ordered pairs. You may take examples. Like: Give an equation for the line that contains points $(-2,-4),(-1,-2),(0,0), 1,2),(2,4),(3,6)$ - They lie on a straight line - The line passes through the origin - In each case the y coordinate is double the x coordinate Therefore we say that $\mathrm{Y}=2 \mathrm{x}$ is the equation this line	

Unit 4: Similar figures (25 periods)

Unit Outcomes: Students will be able to:

- know the concept of similar figures and related terminologies
- understand the condition for triangles being similar.
- apply tests to check whether two given triangles are similar or not.

Competencies
Students will be able to:
-identify figures that are similar to each other - explain the concept of similar figures${ }^{2}$

- draw an enlarged figure of a given real object by enlarging factor
- draw reduced figure of a given real object by reducing factor
- explain facts about two similar triangles
- Apply the definition of similarity of two triangles to solve related problems.

4.2 Similar Triangles

 (17 periods)
4.2.1 Introduction to similar triangles

Teaching / Learning activities and Resources

- You may start the lesson by discussing the concept of similar figures using models of figures or objects like: photographs, polygons having the same shape but different in size.
- Assist student in groups to draw different pairs of similar figures and to give examples of similar figures from their everyday life.
- Assist students to enlarge or reduce a given figure by using scale factors (enlarging factor./reducing factor)
- Help students to come to the conclusion that the scale factor is constant and described by the ratios of corresponding lengths of the figure, so that the ratios are equal which results in the proportionality of the corresponding lengths.
- Start the lesson by revising important ideas from are previous topic about scale factors and proportionality of corresponding sides of similar figures (specially by considering triangles)
- Discuss the similarity of two triangles and motivate the students to define similarity of two triangles.as follows: "Triangles ABC and DEF are similar, if the corresponding sides are proportional and the corresponding angles are congruent: that is, symbolically
if $\triangle \mathrm{ABC} \sim \triangle \mathrm{DEF}$

Assessment

- Ask students to bring figures/ pictures of any kind to the class that are similar and let them explain how they are similar.
- Give exercises on drawing of enlarged or reduced figures.
- Ask students and let them answer orally what is meant by scale factor, proportional sides of similar figures (specially using triangles)
- Ask students to apply the definition and determine the similarity of two given triangles (to say whether they are similar or not)

Mathematics: Grade 8

Competencies	Content	Teaching / Learning activities and Resources	Assessment
- apply the SSS, SAS and AA similarity tests for triangles to determine the similarity of two triangles	4.2.2 Tests for similarity of triangles (SSS, SAS and AA)	$\text { then } \begin{aligned} & \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{EF}}=\frac{\mathrm{CA}}{\mathrm{FD}}=\mathrm{k} \\ & \text { and }=\mathrm{A} \\ & \angle \angle \mathrm{D}, \\ & \angle \mathrm{~B} \equiv \angle \mathrm{E} \\ & \angle \mathrm{~F} \end{aligned}$ In doing so emphasis on the correspondence of sides and angles and the use of the symbol " \sim " for similarity should be given. - Encourage your students to apply the definition to solve problems like: "Given $\triangle \mathrm{PQR} \sim \Delta \mathrm{MNT}$ and if $\mathrm{PQ}=2 \mathrm{~cm}$ $\mathrm{QR}=5 \mathrm{~cm}, \mathrm{MN}=4 \mathrm{~cm}$ then find the length of side NT $\frac{\mathrm{PQ}}{\mathrm{MN}}=\frac{\mathrm{QR}}{\mathrm{NT}}$ $\frac{2}{4}=\frac{5}{N T}$ $\mathrm{NT}=10 \mathrm{~cm}$ - Assist students to realize that it is not necessary to compare all the corresponding sides and angles of two triangles to check whether they are similar or not. It is enough to compare a certain parts of them, for instance proportionality of three corresponding sides (SSS), proportionality of two corresponding sides and congruence of the included angle (SAS) and congruence of two corresponding angles (AA) As an example, let the students justify one of the tests say SSS. 1. Given triangle with lengths of its three sides given 2. Constant of proportionality (κ) is given - Let students draw a triangle either (enlarged or reduced based on the value of κ) then let them check the corresponding angles of these two triangles are congruent by measuring. - Encourage the students to conclude the similarity of the two triangles based on the definition. - You may use the same method for the remaining two tests (Let the students check every thing by measuring the parts) before applying the tests.	- Check how the students use the symbols (\sim) for similarity of triangles and (\equiv) for congruence of the angles correctly. - Give problems on the application of the tests for similarity of triangles.

Mathematics: Grade 8

Competencies	Content	Teaching / Learning activities and Resources	Assessment
- explain how the perimeters of two similar triangles are related	4.2.3 Perimeter and area of similar triangles	-Let the students revise how perimeters and areas of triangles are found. - explain how the areas of two similar triangles are related.\quadLet students find perimeters and areas of two similar triangles and let them find the ratios of the perimeters and the ratio of the areas.	Give exercises on finding perimeter and areas of similar triangles.
Assist them to conclude "the ratio of the perimeters of two			
similar triangles is equal to the ratio of their corresponding			
sides" and "The ratio of the areas of two similar triangles is			
equal to the square of the ratio of their corresponding sides."			

Unit 5: Circles (20 periods)

Unit Outcomes: Students will be able to:

- have a better understanding of circles
- realize the relationship between lines and circles
- apply basic facts about central and inscribed angles and angles formed by intersecting chords to compute their measures.

Competencies	Content	Teaching / Learning activities and Resources	Assessment
Students will be able to: - identify major arc and minor arc - identify sector and segment of a circle concepts - describe the concepts "tangent" and "secant" of a circle. - determine the centre of a circle by construction	5. Circles 5.1 Further on circles (8 periods) - parts of a circle.	- Let students revise circle, radius, diameter, chard, and circumference of a circle. - Let the students differentiate minor and major arc by giving examples. - Assist students to demonstrate sector and segment of a circle. - Guide students to show the possibilities for positional relations between a circle and a straight line That is a straight line may intersect a circle at: - Introduce the concepts "secant" and "tangent" lines - Guide the students to determine the centre of a circle, by construction, in the following manner - Draw circle by using coins. - Draw a chard AB	- Ask students to name the major arc, minor arc, tangent and secant line of a given circle where the parts are clearly shown. - Give problems on finding the centre of a circle by construction.

Competencies	Content	Teaching / Learning activities and Resources	Assessment
- identify central angles and inscribed angles - calculate the measure of central angle or ins cribed angle or the intercepted arc based on the given information.	5.2 Angles in the circle (12 periods) 5.2.1 Central angle and inscribed angle.	- Construct the perpendicular bisector of AB - Draw another cord CD - Construct the perpendicular bisector of CD - The perpendicular bisectors of AB and CD intersect at O , the centre of the circle. - After introducing the meaning of central angle and its relation with the arc subtending it, guide students to solve related problems. $\mathrm{m}(\angle \mathrm{AOB})=\mathrm{m}(\widetilde{\mathrm{ACB}})$ - After introducing the meaning of inscribed angle, encourage	- Give exercises on computing the degree measures of given central angle; inscribed angles and the arc that subtends them.

| Competencies | Content | Teaching / Learning activities and Resources | Assessment |
| :---: | :---: | :---: | :---: | :---: |
| the students to measure the central angle and the inscribed | | | |
| angle subtended by the same arc and conclude that | | | |
| 1. The measure of the inscribed angle is half of the measure of | | | |
| central angle | | | |
| 2. The measure of the inscribed angle is half of the measure of | | | |
| the arc subtends it. | | | |

Mathematics: Grade 8

Competencies	Content	Teaching / Learning activities and Resources	Assessment
- prove that an angle formed by two chords intersecting inside a circle is equal to half the sum of the intercepted arc by measurement - solve problems related to angle formed by two intersecting chords inside a circle. - define "cyclic quadrilateral" - describe property of "cyclic quadrilateral" - prove theorem on the opposite interior angles of a cyclic quadrilateral. - calculate the unknown angle of cyclic quadrilateral	5.2.2 Angles formed by two intersecting chords 5.2.3 Cyclic quadrilaterals	Given the above circle lead the students 1. To connect $\mathrm{D} \& \mathrm{C}$ using ruler 2. To measure $\angle \mathrm{ACD}$ and $\angle \mathrm{BDC}$ using protractor 3. Based on step 2 ask them to write the measures of AD \& $\overparen{B C}$ 4. To measure $\angle \mathrm{BEC}$ 5. To relate $m(\angle \mathrm{BEC})$ with the sum of $\mathrm{m} \overparen{(\mathrm{AD})} \& \mathrm{~m} \overparen{(\mathrm{BC})}$ (That is $\mathrm{m}(\angle \mathrm{BEC}=1 / 2[\mathrm{~m}(\widehat{\mathrm{AD})}+\mathrm{m} \overparen{(\mathrm{BC})}]$ - After introducing the definition of cyclic quadrilateral, guide students to measure the opposite angles of the cyclic quadrilateral \& conclude that they are supplementary. - Assist students to prove that the opposite angles of cyclic quadrilateral are supplementary by using the knowledge of inscribed angle. - Guide students to find out the measures of unknown angles of a cyclic quadrilateral	- Ask students to apply the formula given at the end of the lesson and let them check their answer by measuring. - Give exercises on cyclic quadrilateral and related concepts.

Unit 6: Introduction to probability (15 periods)

Unit Outcomes: Students will be able to:

- understand the concept of certain, uncertain and impossible outcomes
- know specific facts about event, sample space and probability of simple events.

Competencies	Content	Teaching / Learning activities and Resources	Assessment
Students will be able to: - identify certain, and impossible out comes	6. Introduction to probability 6.1 The concept of probability (5 periods) - certain - impossible outcomes 6.2 Probability of simple events (10 periods)	- Assist students to identify certain and impossible out comes by giving different real life examples like:. The day after Monday is Tuesday Two lines intersect at three points When water boils it changes to milk The sun rises in the east. - Lead students to associate certain outcome to 1 an impossible out come to 0 . - Help students to understand the concept of probability by explaining uncertainty. Start by using examples like: - If we throw a coin, head or tail can appear. - It may rain tomorrow If a die is thrown anyone of the digits; 1 to 6 may appear on its upper face. - All the above statements involve some uncertainty. This uncertainty measured numerically by means of probability. - After defining the words 'experiments', 'event' and 'sample space'. Assist students to identify those words mentioned above. For instance when we throw a die six outcomes are possible, they are $1,2,3,4,5$ and 6 we call them sample space and throwing a die is an experiment one of the numbers is an event. - Lead students to derive the formula of probability of an event by giving different examples $\text { (i.e. probability of an event }=\frac{\text { No favorable outcomes }}{\text { No of total outcome }}$	- Ask students to give their own examples. - Ask students question about uncertain out comes of an experiment. - Give exercises on finding probability of simple events.
- identify experiment, event and sample space - determine the probability of simple events - express probability			

Mathematics: Grade 8

Competencies	Content	Teaching / Learning activities and Resources	Assessment
		- Assist students to determine the probabilities of simple events and express in decimal and percentage. eg. What is the probability of choosing the alphabet S from the word" CLASS" Sample space C,L,A,S, S (No. of total out comes is 5) favorable out come is "S" (No. of favorable out comes is 2) probability of choosing S	
		$=\frac{\text { No of favorable outcomes }}{\text { Total No. of outcomes }}$	
		$=\frac{2}{5}=0.4=40 \%$	

Unit 7: Geometry and measurement (30 periods)

Unit Outcomes: Students will be able to:

- understand basic concepts about right angled triangles
- apply some important theorems on right angled triangles.
- know basic principles of trigonometric ratios.
- know different types of pyramids and common parts of them.

Competencies	Content	Teaching / Learning activities and Resources	Assessment
Students will be able to: - apply Euclid's theorem and its converse for solving related problems	7. Geometry and measurement 7.1 Theorems on the right angled triangle (12 periods) 7.1.1 Euclid' Theorem and its converse	- Start the lesson by considering a right angled triangle ABC and the altitude to the hypotenuse as shown below - The attitude divides $\triangle \mathrm{ABC}$ in to two right angled triangle - Guide students to compare $\triangle \mathrm{ABC}$ with the other two triangles formed and show the following similarities i) $\triangle \mathrm{CBD} \sim \triangle \mathrm{ABC}$... (by AA similarity test) from which $\frac{\mathrm{CB}}{\mathrm{AB}}=\frac{\mathrm{DB}}{\mathrm{CB}} \Rightarrow \frac{\mathrm{a}}{\mathrm{c}}=\frac{\mathrm{b}_{2}}{\mathrm{a}} \Rightarrow \mathrm{a}^{2}=\mathrm{b}_{2} \mathrm{c}$ ii) $\triangle \mathrm{ACD} \sim \Delta \mathrm{ABC}-$ (by AA similarity test) from which $\frac{\mathrm{AC}}{\mathrm{AB}}=\frac{\mathrm{AD}}{\mathrm{AC}} \Rightarrow \frac{\mathrm{b}}{\mathrm{c}}=\frac{\mathrm{b}_{1}}{\mathrm{~b}} \Rightarrow \mathrm{~b}^{2}=\mathrm{b}_{1} \mathrm{c}$ - Following this you can state the Euclid's Theorem and its converse - Encourage students to apply the theorem in exercises like.	- Give exercises on the application of Euclid's Theorem and its converse.

Competencies	Content	Teaching / Learning activities and Resources	Assessment
- apply Pythagoras' Theorem and its converse for solving related problem. - describe the trigonometric ratios, the sine, cosine and tangent using right angled triangle.	7.1.2 The Pythagoras' Theorem and its converse 7.2 Introduction to Trigonometry (12 periods) 7.2.1 The Trigonometric ratios	- Ex. $\triangle \mathrm{ABC}$ is a right angled triangle with hypotenuse $\overline{\mathrm{AB}}$, and altitude $\overline{\mathrm{CD}}$ to $\overline{\mathrm{AB}}$. If $\mathrm{AD}=4 \mathrm{~cm}, \mathrm{DB}=5 \mathrm{~cm}$, find the lengths of $\overline{\mathrm{AC}}$ and $\overline{\mathrm{BC}}$ - Similarly you can give examples to illustrate the converse of the theorem. - Let students revise Euclid's Theorem - Assist students to use the Euclidean relation to derive the Pythagorean relation and then state the theorem. - Encourage students to apply the "Pythagoras" Theorem to solve a real world problem. - After discussing the converse of the Pythagoras' Theorem, Assist students to apply it inorder to solve a real world problem by giving several examples and exercises. - Given a right angled triangle let students name the hypotenuse, the sides opposite and adjacent to a given angle - you may take example like: In the right angled triangle ABC Name i) The hypotenuse ii) The side opposite to the marked angle iii) The side adjacent to the marked angle - State the three trigonometric ratios using right angled triangle, like the one shown above, as follows $\begin{aligned} & \sin \hat{B}=\frac{\text { length of the side opposite to } \hat{B}}{\text { length of hypotenuse }} \\ & \cos \hat{B}=\frac{\text { length of the side adjacent to } \hat{B}}{\text { length of hypotenuse }} \\ & \tan \hat{B}=\frac{\text { length of the side opposite to } \hat{B}}{\text { length of the side adjacent to } \hat{B}} \end{aligned}$	- Ask students questions on the application of Pythagoras' Theorem and its converse

Competencies	Content	Teaching / Learning activities and Resources	Assessment
- determine the value the trigonometric ratios for $30^{\circ}, 45^{\circ}$ and 60° angles	7.2.2 The values of sine, cosine and tangent for $30^{\circ}, \mathbf{4 5}^{\circ}$ and 60° angles	- Let students be familiar with each of these ratios by considering several examples like Example Calculate the sin, cos and tan for angles whose measures are given by x^{0} and y^{0}. - By using an equilateral triangle of side length 2 units assist students to determine $\sin 60^{\circ}, \cos 60^{\circ}$, and $\tan 60^{\circ}$, $\sin 30^{\circ}$, $\cos 30^{\circ}$ and $\tan 30^{\circ}$ - You may proceed as follows a) drop a perpendicular $\overline{\mathrm{CD}}$ to side $\overline{\mathrm{AB}}$ b) Consider $\triangle \mathrm{ACD}$ and use Pythagorean relation to find the length of $\overline{\mathrm{CD}}$ which is equal to $\sqrt{3}$ unit	- Give exercise on problems involving description of trigonometric ratios (sine, cosine and tangent) of angles just by giving appropriate length of two or more sides of a right angled triangle. (let them use Pythagoras' Theorem to find a missing length of side) - Check their work - Ask students to find the trigonometric ratios for 300, 450 and 600 by using several triangles. - Check their work

Competencies	Content	Teaching / Learning activities and Resources	Assessment
- apply the trigonometric ratios for 30° and 60° in solving related problems		- Then you can use the values of the trigonometric ratios to find the corresponding values of the angles, for instance. $\begin{aligned} \cos 30^{\circ} & =\frac{\text { length of the side adjacent to } 30^{\circ}}{\text { length of hypotenuse }} \\ & =\frac{\mathrm{CD}}{\mathrm{AC}} \\ \cos 30^{\circ} & =\frac{\sqrt{3}}{2} \end{aligned}$ - Similarly you can give the remaining values of 30° and 60° angles shown. - By using an isosceles right-angled triangle with lengths of the legs 1 unit, assist students to determine $\sin 45^{\circ}, \cos 45^{\circ}$ and $\tan 45^{\circ}$ (Note:- The hypotencese measure $\sqrt{2}$ units $\therefore \sin 45^{\circ}=\frac{1}{\sqrt{2}}$ do not rationalize the denominator) - You may give several examples from the real world to show the application of the trigonometric ratios for 30° and 60° angles like: eg. Consider the following figure At a point $\mathrm{A}, 15 \mathrm{~m}$ from the foot of a school building, as shown in the fig. above, the angle to the top of the building, C , is measured as 60°. What is the height of the school building?	

Competencies	Content	Teaching / Learning activities and Resources	Assessment
- identify parts of a pyramid - orepare models of pyramid - name different types of pyramids based on their bases.	7.3 Solid Figures (6 periods) 7.3.1 Pyramid	Solution: By considering $\triangle \mathrm{ABC}$ which is right angled, we can use trigonometric ratio. $\begin{aligned} \tan 60^{\circ} & =\frac{\mathrm{CB}}{\mathrm{AB}} \\ \tan 60^{\circ} & =\frac{\mathrm{h}}{15} \\ \mathrm{~h} & =15 \times \tan 60^{\circ} \\ \mathrm{h} & =15 \times \sqrt{3} \\ \mathrm{~h} & =15 \sqrt{3} \mathrm{~m} \end{aligned}$ \therefore the height of the school building is $15 \sqrt{3} \mathrm{~m}$ - Motivate students to mention different objects having the shape of pyramid by showing models of pyramid. - Let students identify vertex, edge and faces of pyramids from the model. - Encourage the students to define a pyramid as follows, A pyramid is a solid defined by a base and a point, called an apex, not on the base. The pyramid takes its name from the name of the base. - Introduce different types of pyramids like triangular pyramid, pentogorial pyramid and conclude that when the base is a	- Give problems on the application of trigonometric ratios for $30^{\circ}, 45^{\circ}$ and 60° from real life. - Ask students to identify parts of a pyramid and circular cone.

Mathematics: Grade 8

| Competencies | Content | Teaching / Learning activities and Resources | Assessment |
| :---: | :---: | :---: | :---: | :---: |
| | | circle the pyramid becomes a cone. | |

