Federal Democratic Republic of Ethiopia
 Ministry of Education

Minimum Learning Competencies

Mathematics, Grades 9 to 12

Statement of Minimum Learning Competencies (MLCs) in Mathematics for Grade 9 \& 10

Area of Competency	Grade 9	Grade 10
I. NUMBER SYSTEM The real number system	- identify natural numbers and integers - define prime numbers and composite numbers - determine common factors and common multiples of pairs of numbers - show that repeating decimals are also rational numbers - identify irrational numbers - locate some irrational numbers on a number line. - define real numbers. - describe the correspondence between real numbers and points on a numbers line. - Realize the relationship between a power with fractional exponent and a radical form. - Convert powers with fractional exponent to radical form and vice-versa - perform any one of the four operation on the set of real numbers - use the laws of exponents to simplify expression. - give appropriate upper and lower bounds for a given data to a specified accuracy (e.g. rounding off) - express any positive rational number in its standard form. - explain the notion of rationalization. - identify a rationalizing factor for a given expression. - use the Euclid's division algorithm to express given quotients of the form ```p where, p>q. q```	
II. ALGEBRA Solving Equations and Inequalities	- Solve equations involving exponents and radicals - Solve simultaneous equation - identify the three cases of solutions of simultaneous equations (a unique solution, no solution, infinitely many solutions) - Solve equations involving absolute value - Solve quadratic equations by using any one of the three	- describe sets using internal notation. - solve inequalities involving absolute value of linear expression - solve system of linear inequalities in two variables by using graphical method - solve quadratic inequalities by using product properties

Area of Competency	Grade 9	Grade 10
	methods - Apply Viete's theorem to solve related problems	- solve quadratic inequalities using the sign chart method. - solve quadratic inequalities using graphs
III. SETS	- describe sets in different ways - identify the elements of a given set - explain the notion "empty set" and "universal set" - determine the numbers of subsets of a given finite set and list them. - give the power set of a given set - determine the number of proper subsets of a given finite set and list them. - distinguishes between equal sets and equivalent sets - find equal sets and equivalent sets to a given set - determine number of elements in the union of two finite set. - describe the properties of "union" and "intersection" of sets. - determine the absolute complement of a given set. - determine the relative complement of two sets - determine the symmetric difference of two sets. - determine the Cartesian product of two sets.	
IV. RELATION AND FUNCTION	- define the notions "relation", "domain" and "range" - draw graphs of relations - use graphs of relation to determine domain and range - define function - determine the domain and range of a given function. - determine the sum difference, produced and quotient of functions. - Evaluate combination of functions for a given values from their respective domain. - sketch graphs of linear functions - describe the properties of the graphs of linear functions. - sketch the graphs of a given quadratic function.	- define the polynomial function of one variable - identify the degree, leading coefficient and constant terms of a given polynomial functions. - give different forms of polynomial functions - perform the four fundamental operation on polynomials - state and apply the polynomial division theorem - state and apply the Factor Theorem - determine the zero(s) of a given polynomial function - state and apply the Location theorem to approximate the zero(s) of a given polynomial function
IV. RELATION AND	- describe the properties of the graphs of given quadratic	- apply the rational root test to determine the zero(s)

Area of Competency	Grade 9	Grade 10
FUNCTION (cont.)	functions - determine the maximum and minimum values of a given quadratic function	of a given polynomial function. - sketch the graph of a given polynomial function. - describe the properties of the graphs of a given polynomial function - explain what is meant by exponential expression - state and apply the properties of exponents (where the exponents are real numbers) - express what is meant by logarithmic expression by using the concept of exponential expression - solve simple logarithmic equation by using the properties of logarithm - recognize the advantage of using logarithm to the base 10 in calculation - identify the "characteristics" and "mantissa" of a given common logarithm - use the table for finding logarithm of a given positive number and antilogarithm of a number. - compute using logarithm - define an exponential function. - draw the graph of a given exponential function - describe the graphical relationship of exponential functions having bases reciprocal to each other - describe the properties of an exponential function by using its graph. - define a logarithmic function - draw the graph of a given logarithmic function - describe the properties of a logarithmic function by using its graph - describe the graphical relationship of logarithmic function having bases reciprocal to each other. - describe how the domains and ranges of $y=a^{x}$ and $y=\log _{a}{ }^{x}$ are related - explain the relationship of the graphs of $y=a^{x}$ and $y=\log _{a}{ }^{x}$

Area of Competency	Grade 9	Grade 10
IV. RELATION AND FUNCTION (cont.)		- solve equations involving exponents and logarithms as well - solve problems, involving exponential and logarithmic functions, from real life. - define the sine, cosine and tangent functions of an angle in the standard position. - determine the values of the functions for an angle in the standard position, given the terminal side of that angle. - determine the values of the sine, cosine and tangent functions for quadrantal angles - locate negative and positive angles - determine the values of trigonometric functions for some negative angles. - determine the algebraic signs of the sine, cosine and tangent functions of angles in different quadrants. - describe the relationship between trigonometrical values of complementary angles. - describe the relationship between trignonometrical values of supplementary angles. - determine the relationship between trigonometrical values of coterminal angles. - determine the trigonometrical values of large angles - construct a table of values for $y=\sin \theta$ where -2π $\leq \theta \leq 2 \pi$. - draw the graph of $y=\sin \theta$ - determine the domain range and period of the sine function. - construct a table of values for $\mathrm{y}=\cos \theta$, where $2 \pi \leq \theta \leq 2 \pi$. - draw the graph of $y=\cos \theta$ - determine the domain, range and period of the cosine function.

Area of Competency	Grade 9	Grade 10
IV. RELATION AND FUNCTION (cont.)		- construct a table of values for $\mathrm{y}=\tan \theta$ where -2π $\leq \theta \leq 2 \pi$. - draw the graph the tangent function $y=\tan \theta$. - determine the domain, range and period of the tangent function. - discuss the behavior of the graph of tangent function - define the cosecant function - determine the values of cosecant function for some angles. - define the secant function. - determine the values of secant function for some angles. - define the cotangent function - determine the values of cotangent function for some angles. - explain the concept of co-functions. - derive some of the trignometric identities. - identity the quotient identities. - solve problems related to trigonometrical identities. - solve real life problems using trigonometircal ratios
V. STATISTICS AND PROBABILITY Statistical Data	- differentiate primary and secondary data - collect data from their environment - classify and tabulate primary data according to the required criteria. - construct a frequency distribution table for ungrouped data - construct a histogram for a given data - interprate a given histogram - determine the Mean, Median and Mode of a given data - describe the purposes and uses of Mean, Median and Mode - identify the properties of the Mean of a given data (population function) - compute the measures of dispersion for ungrouped data (manually and using scientific calculator) - describe the purpose and use of measures of dispersion for	

Area of Competency	Grade 9	Grade 10
	ungrouped data. - determine the probability of an event from a repeated experiment. - determine the probability of an event.	
VI. PLANE GEOMETRY AND MEASUREMENT VI. PLANE GEOMETRY AND MEASUREMENT	- show that the sum of the measures of the interior angles of a triangle is 180° - find the measure of each interior angle of a regular polygon - state properties of regular polygons. - determine the lines of symmetry of regular polygons - use the postulates and theorem on congruent triangle in solving related problems. - define similar plane figures and similar solid figures. - apply the SSS, SAS and AA similarity theorems to prove similarity of triangles - discover the relationship between the perimeters of similar plane figures and use this relationship to solve related problems. - discover the relationship between the areas of similar plane figures and use this' relationship to solve related problems. - discover the relationship between the volumes of similar solid's and use this relationship to solve related problems. - enlarge and reduce plane figures by a given scale factor. - solve real life problems using the concepts of similarity and congruency. - describe radian measure of an angle. - convert radian measure to degree measure and vice versa. - use the trigonometrical ratios to solve right angled triangles. - find the angle whose trigonometrical value is given (using trigonometrical table.) - find the trigonemetrical values of angles from trigonometrical table. - determine the trigonometrical values for obtuse angles using trigonometrical table. - discover the symmetrical properties of circles - use the symmetrical properties of circles to solve related problems	- derive the distance formula (to find distance between two points in the coordinate plane) - apply the distance formula to solve related problems in the coordinates plane - determine the coordinates of points that divide a given line segment in a given ratio - define the gradient of a given line - determine the gradient of a given line (given two points on the line) - determine the equation of a given line - identify whether to lines are parallel or not. - identify whether two lines are perpendicular or not. - apply the properties of the slopes of parallel and perpendicular lines to solve related problems - apply the incidence theorems to solve related problems. - apply theorems on special quadrilateral in solving related problems - Apply the theorems on angles and arcs determined by lines intersecting inside, on and outside a circle to solve related problems - calculate the perimeters of regular polygons - calculate the areas of regular polygons - apply the formulae for calculating surface area and volume of prism and cylinder - calculate surface areas of a given pyramid or a cone - calculate the volumes of a given pyramid or a cone. - calculate the surface area of a given sphere

Area of Competency	Grade 9	Grade 10
(cont.)	- state angle properties of circles in their own words. - apply angle properties of circles to solve related problems - Find arc length, perimeters and areas of segments and sectors - calculate areas of triangles using Heron's formula, whenever the lengths of the three sides only are given. - calculate areas of parallelograms. - Calculate the surface areas of cylinders and prisms. - Calculate volumes of cylinders and prisms - differentiate Vectors from scalars quantities. - represent vectors pictorially - explain what is meant by magnitude and direction of a vector. - determine the sum of given vectors - multiply a given vector by a given scales. - express any given vector as position vector.	- calculate the volume of a given sphere - define frustums of a pyramid and of a cone. - calculate the surface areas of frustums of pyramids of cones. - calculate the volumes of pyramids or of cones. - determine the surface area of simple composed solids. - calculate volumes of simple composed solids

Statement of Minimum Learning Competencies (MLCs) in Mathematics for Grade 11 \& 12

Area of Competency	Grade 11	Grade 12
I. NUMBER SYSTEM The set of Complex Number	- add complex numbers correctly - subtract complex numbers correctly. - describe the closure property of both addition and subtraction. - describe the commutative and associative properties of complex numbers. - identify the additive identity element in \mathbb{C}. - determine the additive inverse of a given complex number. - determine the product of two complex numbers. - describe five basic properties of multiplication of complex numbers. - divide two complex numbers - give reason for each step in the process of division of complex numbers - determine the conjugate of a given complex number. - find the Modulus of any given complex number - Write the simplified form of expressions involving complex numbers - describe how to set up the Argand Plane. - Plot the point corresponding to a given complex numbers. - identify the complex number that corresponds to a given point in the Argand Plane. - represent any complex number in the polar form - determine the modulus and argument of a given complex number.	
II. ALGEBRA Rational Expression	- define rational expression - identify the universal set of a given rational expression - show the simplified form and the necessary steps in simplify a given rational expression - Perform the four fundamental operations on rational expression	

Area of Competency	Grade 11	Grade 12
Matrices and Determinants	- decompose rational expressions into sums of partial fractions. - solve rational equations - solve rational inequalities by using algebraic method (by considering all possible cases) - solve rational inequality by using the sign chart method - define matrix - determine the sum and difference of two given matrices of the same order. - multiply a matrix by a scalar - describe the properties of multiplication of matrices by scalars. - determine the product of two matrices. - describe the properties of the product of two matrices. - determine the transpose of a matrix - determine the determinant of a square matrix of order 2. - determine the minor and cofactor of a given element of a matrix - calculate the determinate of a square matrix of order 3 . - describe the properties of determinants.	
II. ALGEBRA (cont.)		
Matrices and Determinants (cont.)	- determine inverse of a square matrix - find associated augmented matrix of equations - describe elementary operations on matrices - solve systems of equations in two or three variables using the elementary operations - apply Cramer's rule to solve systems of linear equations	
Introduction to Linear Programming	\Rightarrow For social science stream only - draw graphs of linear inequalities $\begin{aligned} & y \leq m x+c \text { and } \\ & y \geq m x+c \text { and } \\ & a x+b y \leq c \end{aligned}$ - find maximum and minimum values of a given objective	

Area of Competency	Grade 11	Grade 12
	function under given constraints. - create inequalities from real life examples for linear programming and solve the problem	
II. ALGEBRA (cont.) Mathematical Applications in Business	\Rightarrow For social science stream only (cont.) - compare quantities in terms of ratio. - calculate the rate of increase and the rate of decrease in price of commodities. - solve problems on proportional variation in business - solve problems on compound proportion - find a required percentage of certain given amount - compute problems on percentage increase or percentage decrease - calculate payment by installment for a given simple interest arrangement. - calculate the compound interest of a certain amount invested for a given period of time. - apply the formula for compound interest to solve practical problems - compute annuity for a give arrangement in compound interest. - describe what is depreciation mean and some its causes - compute depreciation by using either of the two methods appropriately. - list five valid reasons for savings. - explain how savings become investment. - list three saving plans. - identify four kinds of financial institutions. - describe three main factors in choosing a particular institution for saving. - identify the four factors that should guide consumers in planning an investment strategy. - explain the differences between stocks and bond. - describe ways to invest in stock and bond	\Rightarrow For social science stream only - find unit cost - find the most economical purchase - find total cost - apply percent increase and percent decrease to business - apply percent increase and percent decrease to business - calculate initial expenses of buying a home - calculate ongoing expenses of owing a home - calculate commissions, total hourly wages, and salaries
	\Rightarrow For social science stream only (cont.)	

Area of Competency	Grade 11	Grade 12
II. ALGEBRA(cont.) Mathematical Applications in Business	- describe the advantages and disadvantages of borrowing money - identify the usual sources of cash loan.. - compute the amount and time on the return of loan based on the or given agreement. - name three types of activities that government performs and give examples of each - explain why government collect taxes. - describe the basic principles of taxation - describe the various kinds of taxes. - give their opinion about "income taxes" mean for them in relation to their future first job. - calculate different types of taxes based on the "rate of tax" in Ethiopia	
III. RELATION AND FUNCTION Further on Relation and Function	- find out the inverse of a given relation - Sketch the graph of a relation and its inverse. - define power functions - describe the properties of powers functions in relation to their exponents - determine the domains and ranges of power functions - sketch the graphs of power functions - define Modulus Function (Absolute value Function, - determine the domain and the range of modulus function - sketch the graph of a Modulus function - define the Signum function - determine the domain and range of Signum function - sketch the graph of the Signum function - define the "Greatest Integer Function" - determine the domain and range of the Greatest Integer function - Sketch the graph of the Greatest Integer function - define "one-to-one" function - identify functions as one-to-one	

Area of Competency	Grade 11	Grade 12
	- define "on to' function - identify functions as on to - identify one-to-one correspondence - define the composition of function. - determine the composite function given the component functions - determine the domain and the range of a composite function of two given functions.	
III. RELATION AND FUNCTION (cont.) Further on Relation and Function	- define inverse function - describe the condition for the existence of inverse function - determine inverse function for an invertible function. - determine whether two given functions are inverses of each other or not. - Sketch the graph of the inverse of a function - determine the domain and range of the inverse of a given function - define rational function. - determine the domain of a given rational function. - determine the range of a given rational function. - sketch the graph of a given rational function - determine the intercepts and symmetry of the graph of a given rational function - identify the type asymptote that the graph of a given function may have. - tell the properties of a given rational function from its graph. - use graphs of rational functions to solve rational inequalities	
III. RELATION AND FUNCTION (cont.) Further on trigonometric	\Rightarrow For Natural Science stream only - define and describe the functions $\sec \mathrm{x}, \operatorname{cosec} \mathrm{x}$ and $\cot \mathrm{x}$. - Sketch graphs of $\sec \mathrm{x}, \operatorname{cosec} \mathrm{x}$ and $\cot \mathrm{x}$	

Area of Competency	Grade 11	Grade 12
functions	- define and describe the functions $\sec \mathrm{x}, \operatorname{cosec} \mathrm{x}$ and $\cot \mathrm{x}$. - Sketch graphs of $\sec \mathrm{x}, \operatorname{cosec} \mathrm{x}$ and $\cot \mathrm{x}$ - Sketch the graphs of $\begin{aligned} & y=a \sin x, \\ & y=a \sin k x ; \\ & y=a \sin (k x+b), \\ & y=a \sin (k x+b)+c \end{aligned}$ - List the properties of these graphs. - Sketch the graphs of $\begin{aligned} & y=a \cos x, \\ & y=a \cos k x \\ & y=a \cos (k x+b) \\ & y=a \cos (k x+b)+c \end{aligned}$ - List the properties of these graphs. - Apply trigonometric functions to solve problems from fields of science, navigation, engineering etc	
III. RELATION AND FUNCTION (cont.) Sequences and Series		- revise the notion of sets and functions. - explain the concepts sequence, term of a sequence, rule (formula of a sequence) - compute any term of a sequence using rule(formula). - draw graphs of finite sequences. - determine the sequence, use recurrence relations such as, $u_{n+1}=2 \mathbf{u}_{n}+1$, given \mathbf{u}_{1} - generate the Fibonacci sequence and investigate its uses, appearance in real life - define arithmetic progressions and geometric progressions. - Determine the terms of arithmetic and geometric sequences - use the sigma notation for sums. - compute partial sums of arithmetic and geometric progressions - apply partial sum formula to solve problems of science and technology - define a series

Area of Competency	Grade 11	Grade 12
		- decide whether a given geometric series is divergent or convergent. - show how infinite series can be divergent or convergent - show how recurring decimals converge - discuss the applications of arithmetic and geometric progressions (sequences) and series in science and technology and daily life.
IV. LOGIC Mathematical Reasoning	- explain the difference between "statement" and "open statement" - determine the truth value of a statement - describe the rules for each of the five logical connectives. - use the symbols $\neg, \wedge, \vee, \Rightarrow$ and \Leftrightarrow to make compound statements - determine truth values of compound statements connected by each of the logical connectives. - determine truth values of two or three statements connected by two or three connectives - describe the properties and laws of logical connectives - determine the equivalence of two statements - define "Contradiction and "Tautology" - determine that a given compound statement is either a contradiction or tautology or neither of them - find the "converse" of a given compound statement - determine the truth value of the converse of a given compound statement - find the "contra -positive" of a given statement - determine the truth value of the contra- positive of a given statement	- recall what they have studied about statements and logical connectives in the previous grade - revise open statement - understand the concept of quantifiers - determine truth values of statements with quantifiers. - define argument and validity - check the validity of a given argument - use rules of inference to demonstrate the validity of a given argument - distinguish between the nature of different types of mathematical proofs. - apply the right type of proof to solve the required problem - apply the principle of mathematical induction for proving - identify a problem and determine whether it could be proved using principle of mathematical induction or not.

Area of Competency	Grade 11	Grade 12
	- describe the two types of quantifiers - determine the truth value of statements involving quantifiers - describe what is meant by "argument" - check the validity of a given argument - use rules of inference to demonstrate the validity of a given argument.	
V. STATISTICS AND PROBABILITY Statistics and Probability	- identify qualitative and quantitative data - describe the difference between discrete and continuous variables (data) - identify ungrouped and grouped data - determine class interval (class size) as required to form grouped data from a given ungrouped data - make cumulative frequency table for grouped data (for both discrete and continuous) - described terms related to grouped continuous data, i.e., class limit, class boundary, class interval and class midpoint. - determine class limit, class boundary, class interval and class midpoint for grouped continuous data. - find the mean of a given grouped data. - find median grouped discrete data - find median for grouped data (continuous variable) - determine the mode of a given grouped data. - identify data that are unimodal, bimodal and multimodal. - determine the quartiles for a given grouped data - determine the required deciles of a given frequency distribution - determine the required percentile of a given frequency distribution. - describe the dispersion of data values - find the range of a given data. - Compute variance for ungrouped data	- \Rightarrow For social science stream only - describe the three methods/techniques of sampling. - explain the advantages and limitation of each techniques of sampling. - describe the different ways of representations of data. - explain the purpose of each representation of data. - Construct graphs of statistical data - identify statistical graph. - explain the significance of representing a given data in different types of graphs. - draw histogram for a given frequency distribution - Sketch frequency polygon for a given frequency distribution - sketch frequency curve for a given frequency distribution - draw bar chart - construct line graph for data related to time. - construct pie chart for a given data. - compute the three mean divations of a given data. - describe the relative significance of Mean divation as a measure of dispersion. - calculate the inter-quartile range for a given data. - describe inter-quartile range as a measure of variability in values of a given set of data. - describe the usefulness of standard deviation in interpreting the variability of a given data.

Area of Competency	Grade 11	Grade 12
V. STATISTICS AND PROBABILITY (cont.) Statistics and Probability (cont.)	- calculate variance for grouped data. - solve problems on variance - Calculate standard deviation for grouped data. - determine the number of different ways of possible selections from a given sets of objects (by using the multiplication principle) - find the number of ways of selections of mutually exclusive operations (by using the addition principle) - determine the factorial of a given non-negative integer - find the possible ways of arranging objects by using the principle of permutation - compute the possible arrangement of objects around the circle (using the principle of circular permutation) - describe the difference between arrangement of objects and selection of objects. - describe what is meant by "combination of objects" - determine the number of different combinations of \mathbf{n} objects, taken \mathbf{r} at a time. - explain the computational relationship between permutation and combination of objects. - prove simple facts about combination. - solve practical problems on combination of objects - write up to the $6^{\text {th }}$ power of a binomial expression $(x+y)^{\mathrm{n}}$ (i.e. when $\mathrm{n}=0,1,2,3,4,5$) in its expanded form by using direct multiplication - describe what they observe in the expansion of $(x+y)^{n}$ where $\mathrm{n}=0,1,2,3,4,5$ - describe "Pascal's Triangle" and its use - apply the "Binomial Theorem" in expanding the $\mathrm{n}^{\text {th }}$ power of binomial terms i.e. $(x+y)^{n}$, where $n \in \mathbf{Z}^{+}$ - determine any term in the expanded form of $(x+y)^{n}$ where $\mathrm{n} \in \mathbf{Z}^{+}$solve problems on binomial expansion	\Rightarrow For social science stream only (cont.) - compare two groups of similar data.. - determine the consistency of two similar group of data with equal mean but different standard deviations - describe the application of coefficient of variation inn comparing two groups of similar data. - describe the relationship among mean, median and mode for grouped data by using its frequency curve. - use cumulative frequency graphs to determine the dispersion of values of data (interms of its Mean, Median and Standard deviation) - determine the variability of value of data interms of quartiles by using cumulative frequency graph. - describe the relationship among mean, median and mode for grouped data by using its frequency curve.
V. STATISTICS AND PROBABILITY (cont.)	- determine any term in the expanded form of $(x+y)^{\mathrm{n}}$, where $\mathrm{n} \in \mathbf{Z}^{+}$ - solve problems on binomial expansion - describe what is meant by "Random Experiment" - explain what is meant by an outcome of a random	

Area of Competency	Grade 11	Grade 12
Statistics and Probability (cont.)	experienced - describe what is meant by sample space of a given random experiment. - list some of the sample points of a sample space for a given experiment. - define "equally likely outcomes" of a given trial in his own words. - define "favorable outcomes/ cases" - determine events of a given random experiment - identify sample (elementary) events and compound events - determine the number of events of a given sample space - describe the occurrence or non occurrence of an event. - explain an event denoted by "not \mathbf{E} " where " \mathbf{E} " is a given event - explain events connected by "or" and "and" - describe the simplified forms of events by using the properties of operations on sets - identify exhaustive events - identify mutually exclusive events - describe events that are both exhaustive and mutually exclusive - identify independent events. - identify dependent events - describe the axiomatic approach of probability - interpret basic facts in the theory of probability.	
V. STATISTICS AND PROBABILITY (cont.) Statistics and Probability (cont.)	- find probabilities of events based on - find probabilities of events based on "Axiomatic" approach. - describe the odds infamous of an event or the odds against an event - Find the probability of $\mathbf{E}_{\mathbf{1}} \cup \mathbf{E}_{\mathbf{2}}$ where \mathbf{E}_{1} and $\mathbf{E}_{\mathbf{2}}$ are events in a random experiment - determine the probability of mutually exclusive events. - find probability of the joint occurrence independent event (by using rule of multiplication) - describe the out comes of events using tree diagram - determine the probability of the joint occurrence of	

Area of Competency	Grade 11	Grade 12
	dependent events (using multiplication rule) - describe the outcomes of events using tree diagram to determine their probability - identify whether a given events are independent or dependent (by comparing the equation for probability of joint occurrence of independent events).	
VI. CALCULUS Limits of sequence of numbers		- define upper and lower bound of number sequences. - find out the least upper (greatest lower) bound of sequences. - define limit of a number sequence - consolidate their knowledge on the concept of sequences stressing on the concept of null sequence. - apply theorems on the convergence of bounded sequences - prove theorem about the limit of the sum of two convergent sequences. - apply theorems on the limit of the difference, product, quotient of two convergent sequences - define limit of a function. - determine the limit of a given function at a point. - find out the limit of the sum, difference, product and quotient of two functions. - define continuity of a function in interval. - describe the properties of continuous functions. - use properties of continuous functions to determine the continuity of various functions. - consolidate what they have studied on limits. - solve problems on limit and continuity to stabilize what have learnt in the unit.
VI. CALCULUS		- find the rate of change of one quantity with respect to another. - sketch different straight line and curved graphs and find out slopes at different points of each graph. - define differentiability of a function at a point x_{0}.

Area of Competency	Grade 11	Grade 12
Introduction to Differential Calculus Application of Differential Calculus		- explain the geometrical and mechanical meaning of derivative. - set up the equation of tangent line at the point of tangency, using the concept of derivative. - find the derivative of elementary functions over an interval. - find the derivatives of power, simple trigonometric, exponential and logarithmic functions - apply the sum and difference formulae of differentiation of functions. - apply the product and quotient formulae of differentiation of functions. - apply the chain rule and differentiate composition of functions - find the $2^{\text {nd }}$ and the $\mathrm{n}^{\text {th }}$ derivative of a function. - consolidate and stabilize what has been studied in the unit. - consolidate the concept zero(s) of a function. - find critical numbers and maximum and minimum values of a function on a closed interval. - explain the geometric interpretations of Rolle's theorem and mean value theorem - find numbers that satisfy the conclusions of mean value theorem and Rolle's theorem. - Solve problems on application of differential calculus - Interpret and apply differential calculus on problems involving the rate of change. - consolidate what has been learnt in this unit

Area of Competency	Grade 11	Grade 12
Introduction to Integral Calculus		- differentiate between the concepts differentiation and integration - use the properties of indefinite integrates in solving problems of integration - integrate simple trigonometric functions - use different techniques of integration for computation of integrals - Compute area under a curve. - use the concept of definite integral to calculate the area under a curve. - state fundamental theorem of calculus - apply fundamental theorem of calculus to solve integration problems. - state the properties of definite integrals. - apply the properties of definite integrals for computations of integration - apply the knowledge on integral calculus to solve problems.
VII. GEOMETRY Coordinate Geometry and Vectors	- write different forms of equation of a line. - determine the slope, x-intercept and y-intercept of a line from its equation - determine the angle between two intersecting lines on the coordinate plane whose equations are given. - determine the distance between a point and a line given on the coordinates plane. - name the different types of conic sections - explain how the conic sections are generated (formed) - define circle as a locus and write equation of a circle - find the radius and center of a circle from its equation. - determine whether a given line and circle have a point of intersection . - determine the coordinates for the intersection point(s) (if the given line and the given circle intersect) - write equation of a tangent line to a given circle. (where the point of tangency is given)	\Rightarrow For social science stream only - construct the coordinate axes in space - identify planes determined by the axes in space. - identify the octants determined by the planes and axes. - read the coordinates of a point in space. - describe how to locate a point in space. - plot a point whose coordinates are given. - give the equations for the planes determined by the axes. - show graphically how to find the distance between two points in space. - compute distance between two given points in space. - determine coordinates of the mid-point of a segment in space. - describe the equation of a sphere - derive equation of a sphere

Area of Competency	Grade 11	Grade 12
	- Write the standard form of equation of a parabola. - draw different types of a parabolas - describe some properties of a given parabola. - define "ellipse" as a locus (set of points on the plane which satisfy a certain given condition) - write the standard form of equation of an ellipse and sketch ellipse - describe some terms related to ellipses (such as latus rectum, eccentricity, major and minor axes...) - define hyperbola as a locus - write the standard form of equation of an ellipse - describe related terms to hyperbola (foci, centre, transverse axis, asymptotes, conjugate axis...) - sketch hyperbola based on its given equation - give eccentricity of a given hyperbola solve problems on hyperbola	- solve problems related with sphere - add, subtract vectors and multiply by a scalar in space - use the unit vectors i, j and k while representing a vector. - describe the properties of addition to solve exercise problems.. - show the closure property on their own - find the length of a vector in space - find the scalar product of two vectors in space. - evaluate and show the angle between two vectors in space.

