Unit

SOLUTION OF EQUATION

Unit Outcomes:

After completing this unit, you should be able to:

* identify equations involving exponents and radicals, systems of two linear equations, equations involving absolute values and quadratic equations.
* solve each of these equations.

Main Contents

2.1 Equations involving exponents and radicals
2.2 Systems of linear equations in two variables
2.3 Equations involving absolute value
2.4 Quadratic equations

Key Terms
Summary
Review Exercises

INTRODUCTION

In earlier grades, you have learnt about algebraic equations and their classification. You also learned about linear equations in one variable and the methods to solve them. In the present unit, we discuss further about equations involving exponents, radicals, and absolute values. You shall also learn about systems of linear equations in two variables, quadratic equations in single variable, and the methods to solve them.

2.1 EQUATIONS INVOLVING EXPONENTS AND RADICALS

Equations are equality of expressions. There are different types of equations that depend on the variable(s) considered. When the variable in use has an exponent other than 1, it is said to be an equation involving exponents.

ACTIVITY 2.1

1 Determine whether or not each of the following is true.
a $\quad 2^{4} \times 2^{5}=2^{20}$
b $\quad\left(3^{2}\right)^{3}=3^{6}$
c $\quad\left(5^{2}\right)^{\frac{1}{2}}=5$
d $\quad 2^{n} \times 2^{2}=2^{2 n}$
e $\quad 2^{x}=8$ is equivalent to $x=3$.

2 Express each of the following numbers in power form.
a 8
b $\quad 27$
C $\quad 625$
d 343

The above Activity leads you to revise the rules of exponents that you discussed in Unit 1.
Example 1 Solve each of the following equations.

Solution:
a

$$
\begin{array}{r}
\sqrt{x}=3 \\
\sqrt{x}^{2}=3^{2} \\
x=9
\end{array}
$$

Squaring both sides

Therefore $x=9$.

b To solve $x^{3}=8$, recall that for any real number a and b, if $a^{n}=b$, then a is the $n^{\text {th }}$ root of b.

$$
\begin{aligned}
& x^{3}=8 \\
& x=\sqrt[3]{8}=2
\end{aligned}
$$

C To solve $2^{x}=16$, first express $2^{x}=16$ as $2^{x}=2^{4}$
In $2^{x}=2^{4}$, the bases are equal and hence the exponents must be equal.
Therefore $x=4$ is the solution.

ACTIVITY 2.2

Solve each of the following equations.
a $\quad 8^{x}=2^{2 x+2}$
b $\quad 4^{x+1}=2^{x}$
c $\quad \sqrt{5}=25^{2 x}$

The following rule is very useful in solving such equations.
Rule: For $a>0, a^{x}=a^{y}$, if and only if $x=y$.
Example 2 Solve $3^{2 x+1}=3^{x 2}$
Solution: By using the rule, since $3>0,3^{2 x+1}=3^{x^{2}}$, if and only if the exponents $2 x+1=x-2$. From this we can see that the solution is $x=-3$

Example 3 Solve each of the following equations.
a $\quad 8^{x}=2^{2 x+1}$
b $\quad 9^{x^{3}}=27^{3 x}$
c $\sqrt[3]{3^{x}}=3^{2 x+5}$

Solution:

a $\quad 8^{x}=2^{2 x+1}$

$$
\begin{aligned}
\left(2^{3}\right)^{x} & =2^{2 x+1} & \text { Expressing } 8 \text { as a power of } 2 \\
2^{3 x} & =2^{2 x+1} & \text { Applying laws of exponents } \\
3 x & =2 x+1 &
\end{aligned}
$$

Therefore $x=1$.
b

$$
9^{x^{3}}=27^{3}
$$

$$
\left.\begin{array}{rl}
\left(3^{2}\right)^{x / 3} & =\left(3^{3}\right)^{3 x} \quad \text { Expressing } 9 \text { and } 27 \text { as powers of } 3 \\
3^{2(x \cdot 3)} & =3^{3(3 x)} \quad \text { Applying laws of exponents } \\
3^{2 x} 6 & =3^{9 x} \\
2 x \quad 6 & =9 x \\
7 x & =6
\end{array}\right\}
$$

Therefore $x=\frac{6}{7}$.

$$
\sqrt[3]{3^{x}}=3^{2 x+5}
$$

$\left(3^{x}\right)^{\frac{3}{3}}=3^{2 x+5} \quad$ Applying laws of exponents

$$
\begin{aligned}
3^{\frac{x}{3}} & =3^{2 x+5} \\
\frac{x}{3} & =2 x+5 \\
x & =3(2 x+5) \\
x & =6 x+15 \\
-5 x & =15
\end{aligned}
$$

Therefore $x=-3$.

Exercise 2.1

1 Solve each of the following equations.
a $\quad 3^{x}=27$
b $\left(\frac{1}{4}\right)^{x}=16$
c $\left(\frac{1}{16}\right)^{3 x+1}=32$
d $\quad 81^{5 x+2}=\frac{1}{243}$
e $\quad 9^{2 x}=27^{2 x+1} \quad$ f $\quad 16^{x+4}=2^{3 x}$
g $\quad(3 x+1)^{3}=64$
h $\quad \sqrt[3]{81^{2 x 1}}=3^{x}$

2 Solve $(2 x+3)^{2}=\left(\begin{array}{ll}3 x & 1\end{array}\right)^{2}$.
3 Solve each of the following equations.
a $\quad 9^{2 x} 27^{1 x}=81^{2 x+1}$
b $\quad 9^{2 x+2}\left(\frac{1}{81}\right)^{x+2}=243^{3 x 2}$
c $\quad 16^{3 x+4}=2^{3 x} 64^{4 x+1}$

2.2 SYSTEMS OF LINEAR EQUATIONS IN TWO VARIABLES

Recall that, for real numbers a and b, any equation of the form $a x+b=0$, where $a \neq 0$ is called a linear equation. The numbers a and b are called coefficients of the equation.

ACTIVITY 2.3

1 Solve each of the following linear equations.
a $\quad x-2=7$
b $\quad x+7=3$
C $2 x=4$
d $\quad 2 x-5=7$
e $\quad 3 x+5=14$

2 How many solutions do you get for each equation?

Observe that each equation has exactly one solution. In general, any linear equation in one variable has one solution.

Definition 2.1

Any equation that can be reduced to the form $a x+b=0$, where $a, b \mathbb{R}$ and $a \neq 0$, is called a linear equation in one variable.

Group Work 2.1

Form a group and do the following.
1 Solve each of the following equations.

a $\quad 7 x \quad 3=2(3 x+2)$
b $\quad 3(2 x+4)=2\left(\begin{array}{ll}3 x & 6\end{array}\right)$
c $\quad 2 x+4=2(x+5)$

2 How many solutions do you get for each equation?
3 What can you conclude about number of solutions?
From the Group Work, observe that such equations can have one solution, infinite solutions or no solution.

Linear equations in two variables

We discussed how we solve equations with one variable that can be reduced to the form $a x+b=0$. What do you think the solution is, if the equation is given as $y=a x+b$?

ACTIVITY 2.4

1 Which of the following are linear equations in two variables?
a $\quad 2 x-y=5$
b $\quad-x+7=y$
C $2 x+3=4$
d $\quad 2 x-y^{2}=7$
e $\frac{1}{x}+\frac{1}{y}=6$

2 How many solutions are there for each of the linear equations in two variables?
3 A house was rented for Birr 2,000 per month plus Birr 2 for water consumption per m^{3}.
a Write an equation for the total cost of x-years rent and $200 \mathrm{~m}^{3}$ of water used.
b If the total cost for x-years rent and $y \mathrm{~m}^{3}$ of water used is Birr 106,000 write an equation.

Note that $a x+b=0$, is a particular case of $y=a x+b$ when $y=0$. This means, for different values of y there will be different equations with their own solutions.
An equation of the type $c x+d y=e$, where c, d and e are arbitrary constants and $c \neq 0$, $d \neq 0$, is called a linear equation in two variables. An equation in two variables of the form $c x+d y=e$ can be reduced to the form $y=a x+b$.

Example 1

a Give solutions to $y=2 x+1$ where y assumes values $0,1,2$ and 3 .
b Plot some of the ordered pairs that make $y=2 x+1$ true on the $x y$-coordinate system.

Solution:

a Let us consider $y=2 x+1$.
When $y=0$, the equation becomes $2 x+1=0$ and its solution is $x=\frac{1}{2}$.
When $y=1$, the equation becomes $2 x+1=1$ and its solution is $x=0$.
When $y=2$, the equation becomes $2 x+1=2$ and its solution is $x=\frac{1}{2}$.
When $y=3$, the equation becomes $2 x+1=3$ and its solution is $x=1$.
Observe that for each value of y, there is one corresponding value of x. This relation is represented by an ordered pair (x, y). The set of all those ordered pairs that satisfy the equation $y=2 x+1$ is the solution to the equation $y=2 x+1$.
b From the four particular cases considered above for $y=2 x+1$, where y assumes values $0,1,2$ and 3 , we can see that the solution is

$$
\left\{\left(\frac{1}{2}, 0\right),(0,1),\left(\frac{1}{2}, 2\right),(1,3)\right\}
$$

Now let us plot these points on the $x y$-coordinate system. See that there is a line that passes through them.
In general, since y can have any value, there are infinite ordered pairs that make the equation $y=a x+b$ true. The plot of these ordered pairs makes a straight line.

Figure 2.1

System of linear equations and their solutions

You have discussed solutions to a linear equation in two variables and observed that there are infinite solutions. Now you will see the joint consideration of two or more linear equations in two variables.

ACTIVITY 2.5

Consider the equations $y=x+1$ and $y=x+1$.
1 Determine the values of y for each equation when the value of x is $-2,-1,0,1$ and 2 .

2 Plot the ordered pairs on the $x y$-coordinate system.
3 What do you observe from the plots of each pair?
4 Discuss what the pair $(0,1)$ is.

Definition 2.2

A set of two or more linear equations is called a system of linear equations. Systems of two linear equations in two variables are equations that can be represented as

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y=c_{1} \\
a_{2} x+b_{2} y=c_{2}
\end{array}, \text { where } a_{1}, a_{2}, b_{1}, b_{2}, c_{1} \text { and } c_{2}\right. \text { are the parameters of the }
$$

system whose specific values characterize the system and $a_{1} 0$ or $b_{1} \quad 0, a_{2} \quad 0$ or $b_{2} \quad 0$.

Example 2 The following are examples of systems of linear equations in two variables.

$$
\mathbf{a} \quad\left\{\begin{array}{l}
2 x+3 y=1 \\
x
\end{array} 2 y=3 . \quad \mathbf{b}\left\{\begin{array}{ll}
3 x & 2 y=2 \\
9 x & 6 y=5
\end{array}\right\}\left\{\begin{array}{l}
x+y=3 \\
2 x+2 y=6
\end{array}\right.\right.
$$

We now discuss how to solve systems of linear equations.

Definition 2.3

A solution to a system of linear equations in two variables means the set of ordered pairs (x, y) that satisfy both equations.

Example 3 Determine the solution of the following system of linear equations.

$$
\left\{\begin{array}{l}
2 x+3 y=8 \\
5 x \quad 2 y=1
\end{array}\right.
$$

Solution: The set $\left\{\left(0, \frac{8}{3}\right),(1,2),\left(2, \frac{4}{3}\right),\left(3, \frac{2}{3}\right),(4,0)\right\}$ contains some of the

$$
\text { solutions to the linear equation } 2 x+3 y=8 \text {. }
$$

The set $\left\{\left(0, \frac{1}{2}\right),(1,2),\left(2, \frac{9}{2}\right),(3,7)\left(4, \frac{19}{2}\right)\right\}$ contains some of the solutions to the linear equation $5 x-2 y=1$.
From the definition given above, the solution to the given system of linear equations should satisfy both equations $2 x+3 y=8$ and $5 x-2 y=1$.
Therefore, the solution is $(1,2)$ and it satisfies both equations.

Solution to a system of linear equations in two variables

You saw in Example 3 above that a solution to a system of linear equations is an ordered pair that satisfies both equations in the system. We obtained it by listing some ordered pairs that satisfy each of the component equations and selecting the common one. But it is not easy to list such solutions. So we need to look for another approach to solving systems of linear equations. These include the graphical method, substitution method and elimination method.

Group Work 2.2

1 Draw the line of each component equation in the following systems.
a $\left\{\begin{array}{l}x+y=1 \\ 2 x \quad 2 y=4\end{array}\right.$
b $\begin{cases}2 x & y=2 \\ 4 x & 2 y=5\end{cases}$
c $\left\{\begin{array}{l}x+y=3 \\ 2 x+2 y=6\end{array}\right.$

2 Do each pair of lines intersect?
3 What can you conclude from these lines and the solutions of each system?
4 In a certain area, the underage marriage rate decreases from 5% to 0.05% in 12 years. By considering the year 1990 as 0 , the linear equation $y=m x+b$ is used to model the underage marriage rate.
a Write the equation of the straight line and determine the year in which under age marriage rate in that area is 0.001% or below.
b Discuss how to model such cases in your kebele.

When we draw the lines of each of the component equations in a system of two linear equations, we can observe three possibilities.

1 The two lines intersect at one point, in which case the system has one solution.
2 The two lines are parallel and never intersect. In this case, we say the system does not have a solution.
3 The two lines coincide (fit one over the other). In this case, there are infinite solutions.

We now discuss a few graphical and algebraic methods to solve a system of linear equations in two variables: a graphical method, the substitution method, and the elimination method.

Solving system of linear equations by a graphical method

In this method, we need to draw the line of each component equation using the same coordinate system. If the lines intersect, there is one solution, that is the point of their intersection. If the lines are parallel, the system has no solution. If the lines coincide, then there are infinite solutions to the system, since every point (ordered pair) on the line satisfies both equations in the system.

ACTIVITY 2.6

Solve each system by drawing the graph of each equation in the system.

a $\left\{\begin{array}{l}y=x+1 \\ y=x+2\end{array}\right.$
b $\left\{\begin{array}{l}y=x+2 \\ y=x \quad 2\end{array}\right.$
c $\quad\left\{\begin{aligned} x+y & =2 \\ 2 x+2 y & =4\end{aligned}\right.$

Example 4 Solve each of the following systems of linear equations.
a $\quad\left\{\begin{array}{l}2 x \quad 2 y=4 \\ 3 x+4 y=6\end{array}\right.$
b $\left\{\begin{aligned} x+2 y & =4 \\ 3 x+6 y & =6\end{aligned} \quad\right.$ c $\quad\left\{\begin{array}{cc}3 x & y=5 \\ 6 x & 2 y\end{array}\right.$

Solution:

a First, draw the graph of each equation.
In the graph, observe that the two lines are intersecting at $(2,0)$. Thus, the system has one solution which is $(2,0)$.

Figure 2.3

Figure 2.2

When we draw the line of each component equation, we see that the lines are parallel. This means the lines do not intersect. Hence the system does not have a solution.
c When we draw the line of each component equation, we see that the lines coincide one over the other, which shows that the system has infinite solutions. That is, all points (ordered pairs) on the line are solutions of the system.

Group Work 2.3

Form a group and do the following.
Consider the following systems of linear equations in two variables.

a $\left\{\begin{array}{r}x+4 y=2 \\ 3 x \quad 4 y=6\end{array}\right.$
b $\left\{\begin{array}{rl}x+2 y & =4 \\ 3 x & y\end{array}=3\right.$

1 Solve each by using substitution method.
2 Solve each by using elimination method.

Solving systems of linear equations by the substitution method

To solve a system of two linear equations by the substitution method, you follow the following steps.

1 Take one of the linear equations from the system and write one of the variables in terms of the other.
2 Substitute your result into the other equation and solve for the second variable.
3 Substitute this result into one of the equations and solve for the first variable.
Example 5 Solve the system of linear equations given by $\left\{\begin{array}{l}2 x \quad 3 y=5 \\ 5 x+3 y=9\end{array}\right.$

Solution:

Step 1 Take $2 x-3 y=5$ and solve for y in terms of x.

$$
2 x-3 y=5 \text { becomes } 3 y=2 x-5
$$

Hence $y=\frac{2}{3} x \frac{5}{3}$.

Step 2 Substitute $y=\frac{2}{3} x \quad \frac{5}{3}$ in $5 x+3 y=9$ and solve for x.

$$
\begin{aligned}
& 5 x+3\left(\frac{2}{3} x \quad \frac{5}{3}\right)=9 \\
& 5 x+2 x-5=9 \\
& 7 x \quad 5=9 \\
& 7 x=14 \\
& x=2
\end{aligned}
$$

Step 3 Substitute $x=2$ again into one of the equations and solve for the remaining variable y.
Choosing $2 x-3 y=5$, when we substitute $x=2$, we get $2(2)-3 y=5$
which becomes $4-3 y=5$

$$
\begin{aligned}
-3 y & =1 \\
y & =\frac{1}{3}
\end{aligned}
$$

Therefore the solution is $\left(2, \frac{1}{3}\right)$.
Example 6 Solve each of the following systems of linear equations.
a $\left\{\begin{aligned} 2 x 4 y & =5 \\ 6 x+12 y & =15\end{aligned}\right.$
b $\left\{\begin{array}{cc}2 x & y=1 \\ 3 x & 2 y=4\end{array}\right.$
$\left\{\begin{aligned} 4 x+3 y & =8 \\ 2 x \frac{3}{2} y & =6\end{aligned}\right.$

Solution:

a $\left\{\begin{array}{c}2 x \quad 4 y=5 \\ 6 x+12 y=15\end{array}\right.$
From $2 x-4 y=5$

$$
\begin{aligned}
-4 y & =-2 x+5 \\
y & =\frac{1}{2} x \frac{5}{4}
\end{aligned}
$$

Substituting $y=\frac{1}{2} x\left\{\frac{5}{4}\right.$ in $-6 x+12 y=-15$, we get

$$
\begin{aligned}
6 x+12\left(\frac{1}{2} x\right. & \left.\frac{5}{4}\right)
\end{aligned}=150150 \text { which is always true. }
$$

Therefore, the system has infinite solutions.
b $\left\{\begin{array}{cc}2 x & y=1 \\ 3 x & 2 y\end{array}=4\right.$
From $2 x-y=1$, we find $y=2 x-1$
Substituting: $3 x-2(2 x-1)=-4$

$$
\begin{aligned}
3 x-4 x+2 & =-4 \\
-x & =-6
\end{aligned}
$$

Therefore $x=6$.
Substituting $x=6$ in $2 x-y=1$ gives

$$
\begin{aligned}
12-y & =1 \\
y & =11
\end{aligned}
$$

So the solution is $(6,11)$.
c $\left\{\begin{aligned} 4 x+3 y & =8 \\ 2 x \frac{3}{2} y & =6\end{aligned}\right.$
From $4 x+3 y=8$

$$
3 y=4 x+8
$$

$$
y=\frac{4}{3} x+\frac{8}{3}
$$

Substituting $y=\frac{4}{3} x+\frac{8}{3}$ in $2 x \quad \frac{3}{2} y=6$ gives $2 x \frac{3}{2}\left(\frac{4}{3} x+\frac{8}{3}\right)=6$

$$
-2 x+2 x-4=-6
$$

$-4=-6$ which is always false.
Therefore, the system has no solution.

Solving systems of linear equations by the elimination method

To solve a system of two linear equations by the elimination method, you follow the following steps.

1 Select one of the variables and make the coefficients of the selected variable equal but opposite in sign in the two equations.
2 Add the two equations to eliminate the selected variable and solve for the resulting variable.
3 Substitute this result again into one of the equations and solve for the remaining variable.

Example 7 Solve the system of linear equations given by

$$
\begin{cases}2 x & y=5 \\ 2 x+3 y=9\end{cases}
$$

Solution:

Step 1 Select one of the variables, say y and make the coefficients of y opposite to one another by multiplying the first equation by 3 .

$$
\left\{\begin{array} { c }
{ 2 x }
\end{array} \quad y = 5 \text { is equivalent with } \left\{\begin{array}{ll}
6 x & 3 y=15 \\
2 x+3 y=9
\end{array}\right.\right. \text { 3y=9}
$$

Step 2 Add the two equations in the system:

$$
\left\{\begin{array}{l}
6 x \quad 3 y=15 \\
2 x+3 y=9
\end{array} \text { giving } 6 x-3 y+2 x+3 y=15+9\right. \text { which becomes }
$$

$$
8 x=24
$$

Therefore $x=3$.
Step 3 Substitute $x=3$ into one of the original equations and solve for y.
Choosing $2 x-y=5$ and replacing $x=3$, get 2 (3) $-y=5$ from which $-y=5-6$
$-y=-1$ which is the same as $y=1$.
Therefore the solution is $(3,1)$.
Example 8 Solve each of the following systems of linear equations.
a $\left\{\begin{array}{l}7 x+5 y=11 \\ 3 x+3 y=3\end{array}\right.$
b $\left\{\begin{array}{rl}2 x & 4 y=8 \\ x & 2 y=4\end{array}\right.$
c $\quad\left\{\begin{array}{rl}2 x & 7 y\end{array}=9\right.$

Solution:

a

:

$\left\{\begin{array}{l}7 x+5 y=11 \\ 3 x+3 y=3\end{array}\right.$
Multiply the first equation by 3 and the second equation by 7 to make the coefficients of the variable x opposite.

We get $\left\{\begin{array}{l}21 x+15 y=33 \\ 21 x+21 y=21\end{array}\right.$

Adding the two equations

$$
21 x+15 y-21 x+21 y=33-21
$$

which becomes $36 y=12$

$$
y=\frac{1}{3}
$$

Substituting $y=\frac{1}{3}$ in one of the equations, say $7 x+5 y=11$, we get

$$
\begin{aligned}
7 x+5\left(\frac{1}{3}\right) & =11 \\
7 x & =11 \quad \frac{5}{3} \\
7 x & =\frac{28}{3} \\
x & =\frac{28}{21}=\frac{4}{3}
\end{aligned}
$$

Therefore the solution is $\left(\frac{4}{3}, \frac{1}{3}\right)$.
b $\left\{\begin{array}{rr}2 x & 4 y=8 \\ x & 2 y=4\end{array}\right.$
Multiplying the second equation by -2 , we get,

$$
\left\{\begin{array}{l}
2 x \quad 4 y=8 \\
2 x+4 y=8
\end{array}\right.
$$

Adding the two equations $2 x-4 y-2 x+4 y=8-8$
We get $0=0$ which is always true.
Therefore, the system has infinite solutions.
c $\quad\left\{\begin{aligned} 2 x 7 y & =9 \\ 6 x+21 y & =6\end{aligned}\right.$
Multiply the first equation by 3 to make the coefficients of the variables opposite.
We get $\left\{\begin{array}{l}6 x \quad 21 y=27 \\ 6 x+21 y=6\end{array}\right.$
Adding the two equations $6 x-21 y-6 x+21 y=27+6$, we get that $0=33$ which is always false.
Therefore, the system has no solution.

Solutions of a system of linear equations in two variables and quotients of coefficients

ACTIVITY 2.7

1 Discuss the solution set to each of the following systems.
a $\quad\left\{\begin{array}{l}3 x+y=2 \\ x\end{array} 2 y=3\right.$
b $\left\{\begin{array}{rr}x & 2 y=3 \\ 2 x & 4 y=5\end{array}\right.$
c $\left\{\begin{array}{l}2 x+3 y=1 \\ 4 x+6 y=2\end{array}\right.$

2 Divide each pair of corresponding coefficients as $\frac{3}{1}, \frac{1}{2}$ and $\frac{2}{3}$ (say for 1a) for each system.

3 Discuss the relationship between the number of solutions and the quotients of coefficients.

4 Solve the given system of two linear equations
$\left\{\begin{array}{l}a_{1} x+b_{1} y=c_{1} \\ a_{2} x+b_{2} y=c_{2}\end{array} ; a_{2}, b_{2}, c_{2} \quad 0\right.$ in terms of the given coefficients.
From Question 4 of the above Activity, you can reach at the following conclusion.
1 If $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$ the system has infinite solutions. In this case, every ordered pair that satisfies one of the component equations also satisfies the second. Such a system is said to be dependent.

2 If $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \frac{c_{1}}{c_{2}}$ the system has no solutions. This means the two component equations do not have a common solution. In this case, the system is said to be inconsistent.

3 If $\frac{a_{1}}{a_{2}} \frac{b_{1}}{b_{2}}$ the system has one solution. This means there is only one ordered pair that satisfies both equations. In this case, the system is said to be independent.
Example 9 Consider the following systems of linear equations.
a $\left\{\begin{array}{r}2 x+3 y=1 \\ x \quad 2 y=3\end{array}\right.$
b $\begin{cases}3 x & 2 y=2 \\ 9 x & 6 y=5\end{cases}$
c $\quad\left\{\begin{aligned} x+y & =3 \\ 2 x+2 y & =6\end{aligned}\right.$

By considering the ratio of the coefficients you can determine whether each system has a solution or not.
a The ratio of the coefficients gives $\frac{2}{1} \frac{3}{2}$.
Therefore, the system has one solution.
b The ratio of the coefficients gives $\frac{3}{9}=\frac{2}{6} \quad \frac{2}{5}$.
Therefore, the system has no solution.
c The ratio of the coefficients gives $\frac{1}{2}=\frac{1}{2}=\frac{3}{6}$.
Therefore, the system has infinite solutions.

Remark: Before trying to solve a system of linear equations, it is a good idea to check

 whether the system has a solution or not.
Word problems leading to a system of linear equations

Systems of linear equations have many real life applications. The real life problems

 need to be constructed in a mathematical form as a system of linear equations which will be solved by the techniques discussed earlier. Here are some examples.
Group Work 2.4

1 Teshome bought 6 pencils and 2 rubber erasers from a shop and paid a total of Birr 3. Meskerem also paid a total of Birr 3 for 4 pencils and 3 rubber erasers.

2 A company has two brands of fertilizers A and B for sell. A cooperative bought 10 quintals of brand A and 27 quintals of brand B fertilizers and paid a total of Birr 20,000.

Tolosa a successful farm owner, bought 15 quintals of brand A and 9 quintals of brand B fertilizers from the same company and paid a total of Birr 14,250.
i Represent variables for the cost of:
a Each pencil and each rubber eraser in Question 1.
b Each quintal of fertilizer of brand A and each quintal of fertilizer of brand B in Question 2.
ii Formulate the mathematical equations representing each of the situations in Questions 1 and 2 as a system of two linear equations.
iii Solve each system and determine the cost of,
a Each pencil and each rubber eraser in Question 1.
b Each quintal of fertilizer of brand A and each quintal of brand B in Question 2.

Example 10 A farmer collected a total of Birr 11,000 by selling 3 cows and 5 sheep. Another farmer collected Birr 7,000 by selling one cow and 10 sheep. What is the price for a cow and a sheep? (Assume all cows have the same price and also the price of every sheep is the same).

Solution: Let x represent the price of a cow and y the price of a sheep.
Farmer I sold 3 cows for $3 x$ and 5 sheep for $5 y$ collecting a total of Birr 11,000. Which means, $3 x+5 y=11,000$
Farmer II sold 1 cow for x and 10 sheep for $10 y$ collecting a total of Birr 7,000.
Which means, $x+10 y=7,000$
When we consider these equations simultaneously, we get the following system of equations.

$$
\left\{\begin{array}{l}
3 x+5 y=11,000 \\
x+10 y=7,000
\end{array}\right.
$$

Multiplying the first equation by -2 to make the coefficients of y opposite

$$
\left\{\begin{array}{c}
6 x \quad 10 y=22,000 \\
x+10 y=7,000
\end{array}\right.
$$

Adding the equations we get $-6 x+x-10 y+10 y=-22,000+7,000$

$$
\begin{aligned}
-5 x & =-22,000+7,000 \\
-5 x & =-15,000 \\
x & =3,000
\end{aligned}
$$

Substituting $x=3,000$ in one of the equations, say $x+10 y=7,000$, we get,

$$
\begin{aligned}
3,000+10 y & =7,000 \\
10 y & =4,000 \\
y & =400
\end{aligned}
$$

Therefore the solution is $(3000,400)$ showing that the price for a cow is Birr 3,000 and the price for a sheep is Birr 400.

Example 11 Simon has twin younger brothers. The sum of the ages of the three brothers is 48 and the difference between his age and the age of one of his younger brothers is 3 . How old is Simon?
Solution: Let x be the age of Simon and y be the age of each of his younger brothers.
The sum of the ages of the three brothers is 48 .
So $x+y+y=48$

$$
x+2 y=48
$$

The difference between his age and the age of one of his younger brothers is 3 implying

$$
x-y=3 .
$$

To find Simon's age, we need to solve the system $\left\{\begin{array}{c}x+2 y=48 \\ x \quad y=3\end{array}\right.$
Multiplying the second equation by 2 to make the coefficients of y opposite

$$
\left\{\begin{aligned}
x+2 y & =48 \\
2 x \quad 2 y & =6
\end{aligned}\right.
$$

Adding the equations, we get

$$
\begin{aligned}
x+2 x+2 y-2 y & =48+6 \\
3 x & =54 \\
x & =\frac{54}{3}=18
\end{aligned}
$$

Therefore, Simon is 18 years old.

Exercise 2.2

1 Which of the following are linear equations in two variables?
a $\quad 5 x+5 y=7$
b $\quad x+3 x y+2 y=1$
c $\quad x=2 y-7$
d $y=x^{2}$
e $\frac{4}{x} \quad \frac{3}{y}=2$

2 The sum of two numbers is 64. Twice the larger number plus five times the smaller number is 20. Find the two numbers.

3 In a two-digit number, the sum of the digits is 14. Twice the tens digit exceeds the units digit by one. Find the numbers.
4 Determine whether each of the following systems of equations has one solution, infinite solutions or no solution.
a $\quad\left\{\begin{array}{c}3 x \quad y=7 \\ 3 x+3 y=1\end{array}\right.$
b $\left\{\begin{array}{l}2 x+5 y=12 \\ x \frac{5}{2} y=4\end{array}\right.$
c $\left\{\begin{array}{c}3 x \\ y\end{array}=78\right.$ $2 x+3 y=12$
d $\begin{cases}4 x & 3 y \\ =6 \\ 2 x+3 y & =12\end{cases}$

5 Solve each of the following systems of equations by using a graphical method.
a $\quad\left\{\begin{array}{rr}3 x+5 y & 11=0 \\ 4 x & 2 y=4\end{array}\right.$
b $\quad\left\{\begin{array}{l}3 x+y=5 \\ 3 x \quad y=5\end{array}\right.$
c $\left\{\begin{array}{c}\frac{2}{3} x+y=6 \\ x \frac{3}{2} y=12\end{array}\right.$
d $\left\{\begin{array}{c}x \quad 2 y=1 \\ 7 x+4 y=16\end{array}\right.$
e $\quad\left\{\begin{aligned} 0.5 x+0.25 y & =1 \\ x+y & =2\end{aligned}\right.$

6 Solve each of the following systems of equations by the substitution method.
a $\left\{\begin{array}{l}2 x+7 y=14 \\ x+\frac{7}{2} y=4\end{array}\right.$
b $\left\{\begin{array}{l}y=x \quad 5 \\ x=y\end{array}\right.$
c $\left\{\begin{aligned} \frac{2}{3} x \quad \frac{1}{3} y & =2 \\ x+\frac{1}{2} y & =3\end{aligned}\right.$
d $\quad\left\{\begin{array}{l}2 x+2 y=3 \\ 7 x+4 y=17\end{array}\right.$
e $\quad\left\{\begin{aligned} x+3 y & =1 \\ 2 x+5 y & =2\end{aligned}\right.$

7 Solve each of the following systems of equations by the elimination method.
a $\quad\left\{\begin{array}{l}3 x+y=5 \\ 3 x+y=5\end{array}\right.$
b $\left\{\begin{array}{l}4 x \quad 3 y=6 \\ 2 x+3 y=12\end{array} \quad\right.$ c $\quad\left\{\begin{array}{l}\frac{2}{3} x \frac{1}{3} y=2 \\ x+\frac{1}{3} y=3\end{array}\right.$
d $\left\{\begin{array}{l}\frac{1}{2} x \quad 2 y=5 \\ 7 x+4 y=6\end{array}\right.$
e $\quad\left\{\begin{aligned} x+3 y & =1 \\ 2 x+5 y & =2\end{aligned}\right.$

8 Solve

$$
\begin{aligned}
& \text { a }\left\{\begin{array} { c c }
{ 3 x \quad 0 . 5 y = 6 } \\
{ 2 x + y } & { = 4 + 2 y }
\end{array} \quad \text { b } \left\{\begin{array}{l}
\frac{2}{x}+\frac{3}{y}=2 \\
\frac{4}{x} \frac{5}{y}=1
\end{array}\right.\right. \\
& \text { Hint: Let } a=\frac{1}{x} \text { and } b=\frac{1}{y}
\end{aligned}
$$

9 Find b and c given that the graph of $y=x^{2}+b x+c$ passes through $(3,14)$ and $(-4,7)$.

10 A student in a chemistry laboratory has access to two acid solutions. The first solution is 20% acid and the second solution is 45% acid. (The percentages are by volume). How many millilitres of each solution should the student mix together to obtain 100 ml of a 30% acid solution?

2.3 EQUATIONS INVOLVING ABSOLUTE VALUE

In previous sections, you worked with equations having variables x or y that can assume any value. But sometimes it becomes necessary to consider only non-negative values. For example, if you consider distance, it is always non-negative. The distance a number x is located on the real line from the origin is a positive number.
From unit one, recall that the set of real numbers can be represented on a line as follows.

From this, it is possible to determine the distance of each point, representing a number, located far away from the origin or the point representing 0 .
Example 1 Let P and Q be points on a number line with coordinates 4 and -4 , respectively. How far are the points P and Q from the origin?
Solution: The distance of P and Q from the origin is the same on the real line.
Note: If X is a point on a number line with coordinate a real number x, then the distance of X from the origin is called the absolute value of x and is denoted by $|x|$.
Example 2 The points represented by numbers 2 and -2 are located on the number line at an equal distance from the origin. Hence, $|2|=|2|=2$.
Example 3 Find the absolute value of each of the following.
a $\quad-5$
b
7
c $\quad-0.5$

Solution:

a $\quad|5|=5$
b $\quad|7|=7$
c $\quad|0.5|=0.5$

In general, the definition of an absolute value is given as follows.

Definition 2.4

The absolute value of a number x, denoted by $\mid x$, is defined as follows.

$$
|x|=\left\{\begin{array}{c}
x \text { if } x \quad 0 \\
x \text { if } x<0
\end{array}\right.
$$

Example 4 Using the definition, determine the absolute value of each of the following.

Solution:

a \quad Since $3>0,|3|=3$
b Since $-2<0,|-2|=-(-2)=2$
c $\quad-0.4<0$, and thus $|-0.4|=-(-0.4)=0.4$
Note: 1 For any real number $x, \quad x=|-x|$.
2 For any real number $x,|x|$ is always non-negative.
We considered absolute value as a distance of a point (representing a number) from the origin, or the distance between the location of the number and the origin. However, it is also possible to consider the distance between any other two points on the real line.
Example 5 Find the distance between the points represented by the numbers 3 and 9.
Solution: The distance between the points represented by numbers 3 and 9 is given as

$$
|3 \quad 9|=|6|=6 \text { or }|9 \quad 3|=|6|=6 \text {. }
$$

The distance between the location of any two real numbers x and y is $|x \quad y|$ or $\left|\begin{array}{ll}y & x\end{array}\right|$.
Note that $\left|\begin{array}{ll}x & y\end{array}\right|=\left|\begin{array}{ll}y & x\end{array}\right|$.
Example $6 \quad \left\lvert\, \begin{array}{ll}5 & 3|=|2|=2 \text { or }| 3 \\ 5 & 5|=|2|=2 \text {. }\end{array}\right.$
Example 7 Evaluate each of the following.

$$
\text { a } \quad|2-5| \quad \text { b } \quad|-3-4| \quad \text { c } \quad|8-3|<\text { d }|2-(-5)|
$$

Solution:
a $\quad|2-5|=|-3|=3 \quad$ b $\quad|-3-4|=|-7|=7$
c $\quad|8-3|=|5|=5$
d $\quad|2-(-5)|=|2+5|=|7|=7$

Next, we will discuss equations that involve absolute values and their solutions. Previously, we saw $|3|=|3|=3$. So for the equation $|x|=3$, it is apparent that $x=3$ or $x=-3$.

Note: For any non-negative number a;

$$
|x|=a \text { means } x=a \text { or } x=-a
$$

Example 8

a $|x-2|=3$ means $x-2=3$ or $x-2=-3$

$$
x=5 \text { or } \quad x=-1
$$

b $|x+4|=5$ means $x+4=5$ or $x+4=-5$

$$
x=1 \text { or } \quad x=-9
$$

This concept of absolute value is essential in solving various problems. Here we see how we can solve equations involving absolute values.

Example 9 Solve $|2 x-3|=5$
Solution: Following the definition $|2 x-3|=5$ means $2 x-3=5$ or $2 x-3=-5$, Solving these linear equations, $x=4$ or $x=-1$.
Example 10 Determine the value of the variable x in each of the following absolute value equations.
a $\quad|x|=4$
b $\quad|x-1|=5$
c $\quad|-2 x+3|=4$
d $\quad|x|=-5$
e $\quad|2 x+3|=-3$

Solution:

a $\quad|x|=4$ means $x=4$ or $x=-4$
b $\quad|x-1|=5$ means $x-1=5$ or $x-1=-5$
Therefore $x=6$ or $x=-4$.
c $\quad|-2 x+3|=4$ means $-2 x+3=4$ or $-2 x+3=-4$

$$
-2 x=1 \text { or } \quad-2 x=-7
$$

Therefore $x=\frac{1}{2}$ or $x=\frac{7}{2}$.
d Since $|x|$ is always non-negative, $|x|=-5$ has no solution.
e Since $|x|$ is always non-negative, $|2 x+3|=-3$ has no solution.

Note: For any real number $a ;|x|=|a|$ means $x=a$ or $x=-a$.

Example 11 Solve each of the following equations.
a $\quad|x-1|=|2 x+1|$
b $\quad|3 x+2|=|2 x-1|$

Solution: a $\quad|x-1|=|2 x+1|$ means $x-1=2 x+1$ or $x-1=-(2 x+1)$

$$
\left\{\begin{aligned}
x-2 x=1+1 & \text { or } x+2 x=-1+1 \\
-x=2 & \text { or } \quad 3 x=0
\end{aligned}\right.
$$

Therefore $x=-2$ or $x=0$.
b $\quad|3 x+2|=|2 x-1|$ means $3 x+2=2 x-1$ or $3 x+2=-(2 x-1)$

$$
\begin{aligned}
3 x-2 x & =-1-2 & & \text { or } 3 x+2 x & =1-2 \\
x & =-3 & & \text { or } \quad 5 x & =-1
\end{aligned}
$$

Therefore $x=3$ or $x=\frac{1}{5}$.
Example 12 Solve each of the following equations.

$$
\text { a } \quad|x-1|=|x+1| \quad \text { b } \quad|2 x+2|=|2 x-1|
$$

Solution:

a $\quad|x-1|=|x+1|$ means $x-1=x+1$ or $x-1=-(x+1)$

$$
\begin{aligned}
x-x & =1+1 \text { or } x+x
\end{aligned}=-1+1 .
$$

But $0=2$ is impossible.
Therefore $x=0$.
b $\quad|2 x+2|=|2 x-1|$ means $2 x+2=2 x-1$ or $2 x+2=-(2 x-1)$

$$
\begin{array}{rlrl}
2 x-2 x & =-1-2 \text { or } 2 x+2 x=1-2 \\
0 & =-3, \quad \text { or } \quad 4 x & =-1 .
\end{array}
$$

But $0=-3$ is not possible.
Therefore $x=\frac{1}{4}$.

Properties of absolute value

For any real numbers x and y;
$1 x|x|$.
$2 \quad|x y|=|x||y|$.
$3 \quad \sqrt{x^{2}}=|x|$.
$4 \quad|x+y| \quad|x|+|y|$ (This is called the triangle inequality).
a If x and y are both non-positive or both non-negative, $|x+y|=|x|+|y|$.
b If one of x or y is positive and the other is negative, $|x+y|<|x|+|y|$
5 If y o then $\left|\frac{x}{y}\right|=\frac{|x|}{|y|}$
$6 \quad|x| \quad x \quad|x|$.

Exercise 2.3

1 Evaluate each of the following.
a $|2-(-3)|$
b $\quad|-4+9|$
c $\quad|-5-2|$
d $|8|-|3-7|$

2 Solve each of the following equations.
a $\quad|x-5|=-5$
b $\quad|x-5|=5$
c $\quad|-(2 x-3)|=7$
d $\quad|3-4 x|=8$
e $\quad|x-(3+2 x)|=6$
f $\quad|12-(x+7)|=3$

3 Solve each of the following equations.
a $\quad|5-x|=|3 x-7|$
b $\quad|3 x-2|=|3 x-7|$
c $\quad|5-4 x|=|7+3 x|$
d $\quad|3 x+4|-|x+7|=0$
e $\quad|7-(x+3)|+|3 x-3|=0$

4 Solve each of the following equations.
a $\quad|x-3|+|x-3|=9 \quad$ b $\quad|3 x+2|-|x-3|=5$
c $\quad|-(2 x-3)|+|x|=12$
d $\quad|4 x-2|=8+|x-3|$
e $\quad|5 x-(1-2 x)|-|3-2 x|=8 \quad$ f $\quad|12-(x+7)|+|x-3|=3$
Hint: Here, for $|x+a|+|x+b|=c$, notice that $|x+a|$ takes either $x+a$ or $-(x+a)$ and also $|x+b|$ takes either $x+b$ or $-(x+b)$, depending on whether they are greater than 0 or less than 0 . Therefore, you need to consider four cases to solve such problems!
5 Verify each of the following.

b $\quad \sqrt{\left(\begin{array}{ll}3 & 7\end{array}\right)^{2}}=\left|\begin{array}{ll}3 x & 7\end{array}\right|$, when $x=5$.

2.4 QUADRATIC EQUATIONS

Recall that for real numbers a and b, any equation that can be reduced to the form $a x+b=0$, where $a \neq 0$ is called a linear equation.
Following the same analogy, for real numbers a, b and c, any equation that can be reduced to the form
$a x^{2}+b x+c=0$, where $a \neq 0$ is called a quadratic equation.
$x^{2}+3 x-2=0,2 x^{2}-5 x=3,3 x^{2}-6 x=0,(x+3)(x+2)=7$ etc, are examples of quadratic equations.
In this section, you will study solving quadratic equations. You will discuss three major approaches to solve quadratic equations, namely, the method of factorization, the method of completing the square, and the general formula. Before you proceed to solve quadratic equations, you will first discuss the concept of factorization.

Expressions

Expressions are combinations of various terms that are represented as a product of variables or numbers and variables.
Example $1 x^{2}+2 x, 2 x^{2}+4 x+2,(x+1) x^{2}+6 x$, etc. are expressions.
x^{2} and $2 x$ are the terms in $x^{2}+2 x$ and $2 x^{2}, 4 x$, and 2 are the terms in $2 x^{2}+4 x+2$.

Factorizing expressions

ACTIVITY 2.8

1 Multiply each of the following.
a $\quad x(x+9)$
b $\quad(x+3)(x-3)$
C $\quad(x+2)(x+3)$

2 How would it be possible to go back from products to factors? Factorize each of the following.
a $x^{2}-9$
b $\quad x^{2}+9 x$
c $\quad x^{2}+5 x+6$

Factorizing an expression is expressing it as a product of its simplest factors.
Example 2 Factorize $2 x^{2}-9 x$.
Solution: The two terms in this expression, $2 x^{2}$ and $-9 x$, have x as a common factor. Hence $2 x^{2}-9 x$ can be factorized as $x\left(\begin{array}{ll}2 x & 9\end{array}\right)$.

So $2 x^{2} \quad 9 x=x\left(\begin{array}{ll}2 x & 9\end{array}\right)$.
Example 3 Factorize $4 x^{2}+12 x$.
Solution: $\quad 4 x^{2}+12 x=(4 x) x+3(4 x)=(4 x)(x+3)$
Example 4 Factorize $(2 x-1)(3 x)+2(2 x-1)$.
Solution: $\quad(2 x-1)(3 x)+2(2 x-1)=(2 x-1)(3 x+2)$ since $(2 x-1)$ is a common factor.

Factorizing the difference of two squares

If we multiply $(x+2)$ and $(x-2)$, we see that $(x+2)(x-2)=x^{2}-4=x^{2}-2^{2}$.

ACTIVITY 2.9

1 What is $75^{2}-25^{2}$? How would you compute this?
2 What is $200^{2}-100^{2}$?

In general,

$$
x^{2}-a^{2}=(x-a)(x+a)
$$

Example 5 Factorize $x^{2}-9$.
Solution: $\quad x^{2}-9=x^{2}-3^{2}=(x-3)(x+3)$
Example 6 Factorize $4 x^{2}-16$.
Solution: $\quad 4 x^{2}-16=(2 x)^{2}-16=(2 x)^{2}-4^{2}=(2 x-4)(2 x+4)$

Factorizing trinomials

You saw how to factorize expressions that have common factors. You also saw factorizing the difference of two squares. Now you will see how to factorize a trinomial $a x^{2}+b x+c$ by grouping terms, if you are able to find two numbers p and q such that $p+q=b$ and $p q=a c$.
Example 7 Factorize $x^{2}+5 x+6$.
Solution: Two numbers whose sum is 5 and product 6 are 2 and 3 .
So, in the expression, we write $2 x+3 x$ instead of $5 x$:

$$
\begin{array}{rlrl}
x^{2}+5 x+6 & =x^{2}+(2 x+3 x)+6 \text { because } 2 x+3 x=5 x . \\
& =\left(x^{2}+2 x\right)+(3 x+6) & & \text { (grouping into two parts) } \\
& =x(x+2)+3(x+2) \ldots & & \text { (factorizing each part) } \\
& =(x+2)(x+3) \text { because }(x+2) \text { is a common factor. }
\end{array}
$$

Example 8 Factorize $x^{2}+4 x+4$.
Solution: Two numbers whose sum is 4 and product 4 are 2 and 2 . So take $2 x+2 x$ instead of $4 x$:

$$
\begin{aligned}
x^{2}+4 x+4 & =x^{2}+(2 x+2 x)+4 \text { because } 2 x+2 x=4 x \\
& =\left(x^{2}+2 x\right)+(2 x+4) \ldots(\text { grouping }) \\
& =x(x+2)+2(x+2) \ldots \ldots(\text { take out the common factor for each group }) \\
& =(x+2)(x+2)=(x+2)^{2} .
\end{aligned}
$$

Such expressions are called perfect squares.

Example 9 Factorize $3 x^{2}-14 x-5$.

Solution: Do you have numbers whose sum is -14 and whose product is $3 \cdot-5=-15$?
$-15+1=-14$ and $-15 \cdot 1=-15$. This means you can use -15 and 1 for grouping, giving

$$
\begin{aligned}
3 x^{2} 14 x \quad & =3 x^{2} 15 x+x \\
& =\left(\begin{array}{ll}
3 x^{2} & 15 x)+\left(\begin{array}{ll}
x & 5
\end{array}\right) \\
& =3 x\left(\begin{array}{ll}
x & 5
\end{array}\right)+1\left(\begin{array}{ll}
x & 5
\end{array}\right) \\
& =\left(\begin{array}{ll}
3 x+1)\left(\begin{array}{ll}
x & 5
\end{array}\right)
\end{array}\right.
\end{array}\right)
\end{aligned}
$$

So $3 x^{2} \quad 14 x \quad 5=(3 x+1)(x \quad 5)$.

ACTIVITY 2.10

Factorize each of the following.
a $\quad 2 x^{2}+10 x+12$
b $\quad 2 x^{2}-x-21$
c $\quad 5 x^{2}+14 x+9$

Solving quadratic equations using the method factorization

Let $a x^{2}+b x+c=0$ be a quadratic equation and let the quadratic polynomial $a x^{2}+b x+c$ be expressible as a product of two linear factors, say $(d x+e)$ and $(f x+g)$ where d, e, f, g are real numbers such that $d \neq 0$ and $f \neq 0$.

Then $a x^{2}+b x+c=0$ becomes

$$
(d x+e)(f x+g)=0
$$

So, $d x+e=0$ or $f x+g=0$ which gives $x=\frac{e}{d}$ or $x=\frac{g}{f}$.
Therefore $x=\frac{-e}{d}$ and $x=\frac{-g}{f}$ are possible roots of the quadratic equation $a x^{2}+b x+c=0$.
For example, the equation $x^{2}-5 x+6=0$ can be expressed as:

$$
\begin{array}{r}
(x-2)(x-3)=0 \\
x-2=0 \text { or } x-3=0 \\
x=2 \text { or } x=3
\end{array}
$$

Therefore the solutions of the equation $x^{2}-5 x+6=0$ are $x=2$ and $x=3$.

In order to solve a quadratic equation by factorization, go through the following steps:

i Clear all fractions and square roots (if any).
ii Write the equation in the form $p(x)=0$.
iii Factorize the left hand side into a product of two linear factors.
iv Use the zero-product rule to solve the resulting equation.
Zero-product rule: If a and b are two numbers or expressions and if $a b=0$, then either $a=0$ or $b=0$ or both $a=0$ and $b=0$.

Example/10 Solye each of the following quadratic equations.
a $\quad 4 x^{2} \quad 16=0$
b $\quad x^{2}+9 x+8=0$
c $\quad 2 x^{2}-6 x+7=3$

Solution:

a $\quad 4 x^{2} \quad 16=0$ is the same as $(2 x)^{2} \quad 4^{2}=0$

$$
\left.\begin{array}{c}
(2 x \quad 4)(2 x+4)=0 \\
(2 x
\end{array} 4\right)=0 \text { or }(2 x+4)=0
$$

Therefore, $x=2$ or $x=-2$.
b

$$
\begin{aligned}
x^{2}+9 x+8 & =0 \\
x^{2}+x+8 x+8 & =0 \\
\left(x^{2}+x\right)+(8 x+8) & =0 \\
x(x+1)+8(x+1) & =0 \\
(x+1)(x+8) & =0 \\
(x+1)=0 \text { or }(x+8) & =0
\end{aligned}
$$

Therefore, $x=-1$ or $x=-8$.
c
$2 x^{2}-6 x+7=3$ is the same as $2 x^{2}-6 x+4=0$
$2 x^{2}-6 x+4=0$ can be expressed as
$2 x^{2} \quad 2 x \quad 4 x+4=0 ;(-2$ and -4 have $\operatorname{sum}=-6$ and product $=8)$.
($2 x^{2}$
2x) (4x
4) $=0$
$2 x(x$

1) $4\left(\begin{array}{ll}x & 1\end{array}\right)=0$
$\left(\begin{array}{ll}2 x & 4\end{array}\right)\left(\begin{array}{ll}x & 1\end{array}\right)=0$
(2x

$$
\text { 4) }=0 \text { or }(x-1)=0
$$

Therefore, $x=2$ or $x=1$.

Exercise 2.4

1 Solve each of the following equations.
a $\quad(x-3)(x+4)=0$
b $\quad 2 x^{2}-6 x=0$
c $\quad x^{2}-3 x+4=4$
d $\quad 2 x^{2}-8=0$
e $\quad 5 x^{2}=6 x$
f $\quad x^{2}-2 x-12=7 x-12$
g $-x^{2}-4=0$
h $\quad 2 x^{2}+8=0$

2 Solve each of the following equations.
a $\quad x^{2}-6 x+5=0$
b $\quad 3 x^{2}-2 x-5=0$
c $\quad x^{2}+7 x=18$
d $\quad-x^{2}=8 x-9$
e $\quad 5 y^{2}-6 y+1=0$
f $\quad 3 z^{2}+10 z=8$

3 Find the solution set of each of the following.
a $\quad 2 x^{2}+\frac{3}{2} x+\frac{1}{4}=0$
b $\quad x^{2}=2.5 x+\frac{25}{16}$
c $\quad\left(6+2 x^{2}\right)+8 x=0$

Solving quadratic equations by completing the square

Group Work 2.5

Considering $2 x^{2}+5 x-4=0$, form a group and do the following.
1 Divide each coefficient by 2.
2 Shift the constant term to the right hand side (RHS).
3 Add the square of half of the middle term to both sides.
4 Do we have any perfect square? Why or why not?
5 Do you observe that $\left(x+\frac{5}{4}\right)^{2}=\frac{57}{16}$?
6 Discuss the solution.
In many cases, it is not convenient to solve a quadratic equation by factorization method. For example, consider the equation $x^{2}+8 x+4=0$. If you want to factorize the left hand side of the equation, i.e., the polynomial $x^{2}+8 x+4$, using the method of splitting the middle term, you need to find two integers whose sum is 8 and product is 4 . But this is not possible. In such cases, an alternative method as demonstrated below is convenient.

$$
\begin{aligned}
& x^{2}+8 x+4=0 \\
& x^{2}+8 x=-4 \\
& x^{2}+8 x+(4)^{2}=-4+(4)^{2} \quad\left(\text { Adding }\left(\frac{1}{2} \text { Coefficient of } x\right)^{2} \text { on both sides }\right) \\
& (x+4)^{2}=-4+16=12 \quad\left(x^{2}+8 x+16=(x+4)^{2}\right) \\
& x+4= \pm \sqrt{12} \quad \text { (Taking square root of both sides) }
\end{aligned}
$$

Therefore $x=-4+\sqrt{12}$ and $x=-4-\sqrt{12}$ are the required solutions.

This method is known as the method of completing the square.

In general, go through the following steps in order to solve a quadratic equation by the method of completing the square:

i Write the given quadratic equation in the standard form.
ii Make the coefficient of x^{2} unity, if it is not.
iii Shift the constant term to R.H.S.(Right Hand Side)
iv $\operatorname{Add}\left(\frac{1}{2} \text { coefficient of } x\right)^{2}$ on both sides.
v Express L.H.S.(Left Hand Side) as the perfect square of a suitable binomial expression and simplify the R.H.S.
vi Take square root of both the sides.
vii Obtain the values of x by shifting the constant term from L.H.S. to R.H.S.
Note: The number we need to add (or subtract) to construct a perfect square is determined by using the following product formulas:

$$
\begin{aligned}
& x^{2}+2 a x+a^{2}=(x+a)^{2} \\
& x^{2}-2 a x+a^{2}=(x-a)^{2}
\end{aligned}
$$

Note that the last term, a^{2}, on the left side of the formulae is the square of one-half of the coefficient of x and the coefficient of x^{2} is +1 . So, we should add (or subtract) a suitable number to get this form.
Example 11 Solve $x^{2}+5 x-3=0$.
Solution: Note that $\left(\frac{5}{2}\right)^{2}=\frac{25}{4}$.
Hence, we add this number to get a perfect square.

$$
\begin{aligned}
& x^{2}+5 x \quad 3=0 \\
& x^{2}+5 x=3 \\
& x^{2}+5 x+\frac{25}{4}=3+\frac{25}{4} \\
& x^{2}+5 x+\frac{25}{4}=\frac{37}{4} ; \quad\left(x^{2}+5 x+\frac{25}{4} \text { is a perfet squre. }\right) \\
& \left(x+\frac{5}{2}\right)^{2}=\frac{37}{4}
\end{aligned}
$$

$$
\begin{aligned}
\left(x+\frac{5}{2}\right) & =\sqrt{\frac{37}{4}} \text { or }\left(x+\frac{5}{2}\right)=\sqrt{\frac{37}{4}} \\
x & =\frac{5}{2}+\sqrt{\frac{37}{4}} \text { or } x=\frac{5}{2} \sqrt{\frac{37}{4}}
\end{aligned}
$$

Therefore $x=\frac{5+\sqrt{37}}{2}$ or $x=\frac{5 \sqrt{37}}{2}$.
Example 12 Solve $3 x^{2}+12 x+6=0$.
Solution: First divide all terms by 3 so that the coefficient of x^{2} is +1 .

$$
\begin{array}{rlrl}
3 x^{2}+12 x+6 & =0 \text { becomes } x^{2}+4 x+2=0 \\
x^{2}+4 x & =-2 & & \text { (Shifting the constant term to the right side) } \\
x^{2}+4 x+4 & =-2+4 & & \text { (half of } 4 \text { is } 2 \text { and its square is } 4) \\
(x+2)^{2} & =2 & & \left(x^{2}+4 x+4=(x+2)^{2}\right. \text {, } \\
(x+2) & = \pm \sqrt{2} & & \\
x & =-2 \pm \sqrt{2} & &
\end{array}
$$

Therefore $x=2 \sqrt{2}$ or $x=2+\sqrt{2}$.
Example 13 Solve $3 x^{2}+12 x+15=0$.
Solution: First divide all terms by 3 so that the coefficient of x^{2} is +1 .

$$
\begin{array}{rlrl}
3 x^{2}+12 x+15 & =0 \text { becomes } & x^{2}+4 x+5=0 \\
x^{2}+4 x & =5 & & \text { (Shifting the constant term to the right si } \\
x^{2}+4 x+4 & =5+4 & & \text { (half of } 4 \text { is } 2 \text { and its square is } 4 \text {) } \\
(x+2)^{2} & =1 & \left(x^{2}+4 x+4=(x+2)^{2}\right. \text {, a perfect square) } \\
(x+2) & = \pm \sqrt{1} & &
\end{array}
$$

Since $\sqrt{1}$ is not a real number, we conclude that the quadratic equation does not have a real solution.
Example 14 Solve $2 x^{2}+4 x+2=0$.
Solution: $2 x^{2}+4 x+2=0$ becomes

$$
\begin{aligned}
x^{2}+2 x+1=0 & \\
(x+1)^{2}=0 & \\
(x+1)=0 &
\end{aligned}
$$

Therefore $x=-1$ is the only solution.

Exercise 2.5

1 Solve each of the following quadratic equations by using the method of completing the square.
a $x^{2}-6 x+10=0$
b $\quad x^{2}-12 x+20=0$
c $2 x^{2}-x-6=0$
d $\quad 2 x^{2}+3 x-2=0$
e $\quad 3 x^{2}-6 x+12=0$
f $\quad x^{2}-x+1=0$

2 Find the solution set for each of the following equations.
a $\quad 20 x^{2}+10 x-8=0$
b $\quad x^{2}-8 x+15=0$
C $\quad 6 x^{2}-x-2=0$
d $14 x^{2}+43 x+20=0$
e $\quad x^{2}+11 x+30=0$
f $\quad 2 x^{2}+8 x-1=0$

3 Reduce these equations into the form $a x^{2}+b x+c=0$ and solve.
a $\quad x^{2}=5 x+7$
b $\quad 3 x^{2}-8 x=15-2 x+2 x^{2}$
c $\quad x(x-6)=6 x^{2}-x-2$
d $\quad 8 x^{2}+9 x+2=3\left(2 x^{2}+6 x\right)+2\left(\begin{array}{ll}x & 1\end{array}\right)$
e $\quad x^{2}+11 x+30=2+11 x(x+3)$

Solving quadratic equations using the quadratic formula

Following the method of completing the square, you next develop a general formula that can serve for checking the existence of a solution to a quadratic equation, and for solving quadratic equations.
To derive the general formula for solving $a x^{2}+b x+c=0, a \neq 0$, we proceed using the method of completing the square.
The following Group Work will help you to find the solution formula of the quadratic equation $a x^{2}+b x+c=0, a \neq 0$, by using the completing the square method.

Group Work 2.6

Consider $a x^{2}+b x+c=0, a \neq 0$
1 First divide each term by a.

2 Shift the constant term $\frac{c}{a}$ to the right.
3 Add the square of half of the middle term to both sides.
4 Do you have a perfect square?
5 Solve for x by using completing the square.
6 Do you observe that $x=\frac{b \pm \sqrt{b^{2} \quad 4 a c}}{2 a}$?
7 What will be the roots of the quadratic equation $a x^{2}+b x+c=0$?

For a general quadratic equation of type $a x^{2}+b x+c=0, a \neq 0$, by applying the method of completing the square, you can conclude that the roots are $r_{1}=\frac{b \sqrt{b^{2} 4 a c}}{2 a}$ and $r_{2}=\frac{b+\sqrt{b^{2} 4 a c}}{2 a}$.
Therefore, the solution set is $\left\{\frac{b \sqrt{b^{2} 4 a c}}{2 a}, \frac{b+\sqrt{b^{2} 4 a c}}{2 a}\right\}$.
From the above discussions, what do you observe about $b^{2} \quad 4 a c$ in $x=\frac{b \pm \sqrt{b^{2} / 4 a c}}{2 a}$?

ACTIVITY 2.11

In $x=\frac{b \pm \sqrt{b^{2} 4 a c}}{2 a}$, discuss the possible conditions for x when,

a $b^{2}-4 a c>0$
b $\quad b^{2}-4 a c=0$
c $b^{2}-4 a c<0$

Note: If any quadratic equation $a x^{2}+b x+c=0, a \neq 0$ has a solution, then the solution is determined by $x=\frac{b \pm \sqrt{b^{2} 4 a c}}{2 a}$ and
1 if $b^{2} \quad 4 a c>0$, then $x=\frac{b \pm \sqrt{b^{2} \quad 4 a c}}{2 a}$ represents two numbers, namely $x=\frac{b \sqrt{b^{2} 4 a c}}{2 a}$ and $x=\frac{b+\sqrt{b^{2} 4 a c}}{2 a}$.

Therefore, the equation has two solutions.
2 if $b^{2}-4 a c=0$ then $x=\frac{b \pm \sqrt{b^{2} 4 a c}}{2 a}=\frac{b}{2 a}$ is the only solution.
Therefore, the equation has only one solution.
3 if $b^{2} \quad 4 a c<0$, then $x=\frac{b \pm \sqrt{b^{2} \quad 4 a c}}{2 a}$ is not defined in \mathbb{R}.
Therefore, the equation does not have any real solution.
The expression $b^{2} 4 a c$ is called the discriminant or discriminator. It helps to determine the existence of solutions.
Example 15 Using the discriminant, check to see if the following equations have solution(s), and solve if there is a solution.
a $\quad 3 x^{2}-5 x+2=0$
b $\quad x^{2}-8 x+16=0$
c $-2 x^{2}-4 x-9=0$

Solution:

a $\quad 3 x^{2}-5 x+2=0 ; a=3, b=-5$ and $c=2$.
So $b^{2} \quad 4 a c=(5)^{2} \quad 4(3)(2)=1>0$
Therefore, the equation $3 x^{2}-5 x+2=0$ has two solutions.
Using the quadratic formula, $x=\frac{b \pm \sqrt{b^{2} \quad 4 a c}}{2 a}$

$$
\begin{aligned}
& x=\frac{(5) \sqrt{(5)^{2} 4(3)(2)}}{2(3)} \text { or } x=\frac{(5)+\sqrt{\left.(5)^{2}\right) 4(3)(2)}}{2(3)} \\
& x=\frac{5 \sqrt{2524}}{6} \text { or } x=\frac{5+\sqrt{2524}}{6}
\end{aligned}
$$

$$
x=\frac{5 \sqrt{1}}{6} \text { or } x=\frac{5+\sqrt{1}}{6}
$$

$$
x=\frac{5 \quad 1}{6} \text { or } x=\frac{5+1}{6}
$$

$$
x=\frac{4}{6} \text { or } x=\frac{6}{6}
$$

Therefore $x=\frac{2}{3}$ or $x=1$.
b In $x^{2}-8 x+16=0, a=1, b=-8$ and $c=16$
So $b^{2} \quad 4 a c=(8)^{2} \quad 4(1)(16)=0$
Therefore, the equation $x^{2}-8 x+16=0$ has only one solution.
Using the quadratic solution formula, $x=\frac{b \pm \sqrt{b^{2} 4 a c}}{2 a}=\frac{b}{2 a}$

$$
x=\frac{(8)}{2(1)}=4
$$

Therefore the solution is $x=4$.
c In $-2 x^{2}-4 x-9=0, a=-2, b=-4$ and $c=-9$
So $b^{2} \quad 4 a c=(4)^{2} \quad 4(2)(9)=56<0$
Therefore the equation $2 x^{2} \quad 4 x \quad 9=0$ does not have any real solution.

Exercise 2.6

1 Solve each of the following quadratic equations by using the quadratic solution formula.
a $\quad x^{2}+8 x+15=0$
b $\quad 3 x^{2} \quad 12 x+2=0$
c $4 x^{2} \quad 4 x \quad 1=0$
d $\quad x^{2}+3 x \quad 2=0$
e $5 x^{2}+15 x+45=0 \quad$ f $\quad 3 x^{2} \quad 4 x \quad 2=0$

2 Find the solution set for each of the following equations.
a $\quad x^{2}+6 x+8=0$
b $\quad 9+30 x+25 x^{2}=0$
c $\quad 9 x^{2}+15 \quad 3 x=0$
d $4 x^{2} \quad 36 x+81=0$
e $\quad x^{2}+2 x+8=0$
f $\quad 2 x^{2}+8 x+1=0$

3 Reduce the equations into the form $a x^{2}+b x+c=0$ and solve.
a $\quad 3 x^{2}=5 x+7 \quad x^{2}$
b $\quad x^{2}=8+2 x+2 x^{2}$
c $\quad x^{2} \quad 2\left(\begin{array}{ll}x & 6\end{array}\right)=6 \quad x \quad$ d $\quad x^{2} \quad 4+x(1+6 x)+2\left(\begin{array}{ll}x & 1\end{array}\right)=4 x \quad 3$
e $\quad 48 x^{2}+6 x=2 x(x+3)+2 x$

4 A school community had planned to reduce the number of grade 9 students per class room by constructing additional class rooms. However, they constructed 4 less rooms than they planned. As the result, the number of students per class was 10 more than they planned. If there are 1200 grade 9 students in the school, determine the current number of class rooms and the number of students per class.

The relationship between the coefficients of a

 quadratic equation and its rootsYou have learned how to solve quadratic equations. The solutions to a quadratic equation are sometimes called roots. The general quadratic equation
$a x^{2}+b x+c=0, a \neq 0$ has roots (solutions)
$r_{1}=\frac{b \sqrt{b^{2} 4 a c}}{2 a}$ and $r_{2}=\frac{b+\sqrt{b^{2} 4 a c}}{2 a}$.

ACTIVITY 2.12

1 If $r_{1}=\frac{b \sqrt{b^{2} 4 a c}}{2 a}$ and $r_{2}=\frac{b+\sqrt{b^{2} 4 a c}}{2 a}$ are roots of the
 quadratic equation $a x^{2}+b x+c=0, a \quad 0$ then
a Find the sum of the roots $\left(r_{1}+r_{2}\right)$.
b Find the product of the roots $\left(r_{1} r_{2}\right)$.

2 What relationship do you observe between the sum and product of the roots with respect to the quotients of the coefficients of $a x^{2}+b x+c=0$, namely a, b and c ?
3 Test your answer on the quadratic equation $2 x^{2} \quad 7 x+5=0$.
The relationship between the sum and product of the roots of a quadratic equation and its coefficients is stated below and it is called Viete's theorem.

Theorem 2.1 Viete's theorem

If the roots of $a x^{2}+b x+c=0, a \quad 0$ are $r_{1}=\frac{b \sqrt{b^{2} 4 a c}}{2 a}$ and $r_{2}=\frac{b+\sqrt{b^{2} 4 a c}}{2 a}$, then $r_{1}+r_{2}=\frac{b}{a}$ and $r_{1} \cdot r_{2}=\frac{c}{a}$

You can check Viete's Theorem as follows:
The roots of $a x^{2}+b x+c=0$ are

$$
r_{1}=\frac{b \sqrt{b^{2} 4 a c}}{2 a} \text { and } r_{2}=\frac{b+\sqrt{b^{2} 4 a c}}{2 a}
$$

Their sum is $r_{1}+r_{2}=\frac{b \sqrt{b^{2} 4 a c}}{2 a}+\frac{b+\sqrt{b^{2} 4 a c}}{2 a}$

$$
=\frac{\left(\begin{array}{ll}
\left.b \sqrt{b^{2} / 4 a c}\right)+\left(b+\sqrt{b^{2}(4 a c}\right)
\end{array}\right)}{2 a}=\frac{2 b}{2 a}=\frac{b}{a}
$$

and their product is $r_{1} \cdot r_{2}=\left(\frac{b \sqrt{b^{2} 4 a c}}{2 a}\right)\left(\frac{b+\sqrt{b^{2} 4 a c}}{2 a}\right)$

$$
\left(\frac{b^{2}\left(b^{2} 4 a c\right)}{\left.(2 a)^{2}\right)}\right)=\left(\frac{4 a c}{4 a^{2}}\right)=\frac{c}{a}
$$

So the sum of the roots is $\frac{b}{a}$ and the product of the roots is $\frac{c}{a}$.
Example 16 If $3 x^{2}+8 x+5=0$, then find
a The sum of its roots. b The product of its roots.
Solution: In $3 x^{2}+8 x+5=0, a=3, b=8$ and $c=5$.
Sum of the roots $=\frac{b}{a}=\frac{8}{3}$ and the product of the roots is $\frac{c}{a}=\frac{5}{3}$.

Exercise 2.7

1 Determine the sum of the roots of the following equations without solving them.
a $\quad x^{2}-9 x+1=0$
b $\quad 4 x^{2}+11 x-4=0$
c $\quad-3 x^{2}-9 x-16=0$

2 Determine the product of the roots of the following equations without solving them.
a $\quad-x^{2}+2 x+9=0 \quad$ b
$2 x^{2}+7 x-3=0$
C $\quad-3 x^{2}+8 x+1=0$

3 If the sum of the roots of the equation $3 x^{2}+k x+1=0$ is 7 , then what is the value of k ?

4 If the product of the roots of the equation $k x^{2}+8 x+3=0$ is 1 , then what is the value of k ?
5 If one of the roots of the equation $x^{2}-4 x+k=0$ exceeds the other by 2 , then find the roots and determine the value of k.

6 Determine the value of k so that the equation $x^{2}+k x+k-1=0$ has exactly one real root.

Word problems leading to quadratic equations

Quadratic equations can be successfully used for solving a number of problems related to our day-to-day activities.

The following working rule could be useful in solving such problems.

Step 1 Read the given problem carefully and identify the unknown quantity.
Step 2 Define the unknown quantity as the variable x (say).
Step 3 Using the variable x, translate the given problem into a mathematical statement, i.e., a quadratic equation.

Step 4 Solve the quadratic equation thus formed.
Step 5 Interpret the solution of the quadratic equation, i.e., translate the result into the language of the given problem.

Remark:

i At times it may happen that, out of the two roots of the quadratic equation, only one has a meaning for the problem. In such cases, the other root, which does not satisfy the conditions of the given problem, must be rejected.
ii In case there is a problem involving two or more than two unknown quantities, we define only one of them as the variable x. The remaining ones can always be expressed in terms of x, using the condition(s) given in the problem.

Example 17 The sum of two numbers is 11 and their product is 28 . Find the numbers.
Solution: Let x and y be the numbers.
You are given two conditions, $x+y=11$ and $x y=28$
From $x y=28$ you can express y in terms of x, giving $y=\frac{28}{x}$
Replace $y=\frac{28}{x}$ in $x+y=11$ to get $x+\frac{28}{x}=11$
Now proceed to solve for x from $x+\frac{28}{x}=11$ which becomes

$$
\begin{aligned}
& \frac{x^{2}+28}{x}=11 \\
& x^{2}+28=11 x \\
& x^{2}-11 x+28=0, \text { which is a quadratic equation. }
\end{aligned}
$$

Then solving this quadratic equation, you get $x \neq 4$ or $x=7$.
If $x=4$ then from $x+y=11$ you get $4+y=11 \Rightarrow y=7$
If $x=7$ then from $x+y=11$ you get $7+y=11 \Rightarrow y=4$
Therefore, the numbers are 4 and 7 .
Example 18 Two different squares have a total area of $274 \mathrm{~cm}^{2}$ and the sum of their perimeters is 88 cm . Find the lengths of the sides of the squares.
Solution: Let the squares be as given below.

Figure 25

Recall, the area of the smaller square is x^{2} and area of the bigger square is y^{2}.
The perimeter of the smaller square is $4 x$ and that of the bigger square is $4 y$.
So the total area is $x^{2}+y^{2}=274$ and the sum of their perimeters is $4 x+4 y=88$.
From $4 x+4 y=88$ you solve for y and get $y=22-x$.
Substitute $y=22-x$ in $x^{2}+y^{2}=274$ and get $x^{2}+(22-x)^{2}=274$.
This equation is $x^{2}+484-44 x+x^{2}=274$ which becomes the quadratic equation $2 x^{2}-44 x+210=0$.
Solving this quadratic equation, you get $x=15$ or $x=7$.
Therefore, the side of the smaller square is 7 cm and the side of the bigger square is 15 cm .

Exercise 2.8

1 The area of a rectangle is $21 \mathrm{~cm}^{2}$. If one side exceeds the other by 4 cm , find the dimensions of the rectangle.

2 The perimeter of an equilateral triangle is numerically equal to its area. Find the length of the side of the equilateral triangle.

3 Divide 29 into two parts so that the sum of the squares of the parts is 425 . Find the value of each part.

4 The sum of the squares of two consecutive natural numbers is 313 . Find the numbers.

5 A piece of cloth costs Birr 200. If the piece was 5 m longer, and the cost of each metre of cloth was Birr 2 less, the cost of the piece would have remained unchanged. How long is the piece and what is its original price per metre?

6 Birr 6,500 were divided equally among a certain number of persons. Had there been 15 more persons, each would have got Birr 30 less. Find the original number of persons.

7 A person on tour has Birr 360 for his daily expenses. If he extends his tour for 4 days, he has to cut down his daily expense by Birr 3. Find the original duration of the tour.

8 In a flight of 600 km , an aircraft was slowed down due to bad weather. Its average speed for the trip was reduced to $200 \mathrm{~km} / \mathrm{hr}$ and the time increased by 30 minutes. Find the duration of the flight.

9 An express train makes a run of 240 km at a certain speed. Another train whose speed is $12 \mathrm{~km} / \mathrm{hr}$ less takes an hour longer to cover the same distance. Find the speed of the express train in $\mathrm{km} / \mathrm{hr}$.

Key Terms

absolute value	exponents	quadratic equations
completing the square	factorization	quadratic formula
discriminant	graphical method	radicals
elimination method	linear equations	substitution method

Summary

1 Equations are equality of expressions.
2 For $a>0, a^{x}=a^{y}$, if and only if $x=y$.
3 An equation of the type $c x+d y=e$, where c and d are arbitrary constants and d $0, c \quad 0$ is called a linear equation in two variables, and its solution is a line (infinite points).
4 A system of linear equations is a set of two or more linear equations, and a system of two linear equations in two variables are equations that can be represented as

$$
\left\{\begin{array}{l}
a_{1} x+b_{1} y=c_{1} \\
a_{2} x+b_{2} y=c_{2}
\end{array}\right.
$$

5 A solution to a system of linear equation in two variables means the set of ordered pairs (x, y) that satisfy both the linear equations.
a $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$ implies the system has infinite solutions.
b $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \quad \frac{c_{1}}{c_{2}}$ implies the system has no solutions.
c $\frac{a_{1}}{a_{2}} \quad \frac{b_{1}}{b_{2}}$ implies the system has one solution.
6 Geometrically,
a If two lines intersect at one point, the system has one solution.
b If two lines are parallel, and never intersect, the system does not have a solution.
c If the two lines coincide (fit one over the other), the system has infinite solutions.

7 A system of linear equation in two variables can be solved in any of the following ways: graphically, by substitution or by elimination.
8 For any real number $x,|x|=|x|$.
9 For any real number $x,|x|$ is always non-negative.
10 For any non-negative number $a\left(\begin{array}{ll}a & 0\end{array}\right) ;|x|=a$ means $x=a$ or $x=a$.
11 For any non-negative number $a\left(\begin{array}{ll}a & 0\end{array}\right) ;|x|=|a|$ means $x=a$ or $x=a$.
12 For real numbers a, b and c, any equation that can be reduced to the form $a x^{2}+b x+c$, where $a \neq 0$ is called a quadratic equation.
13 Writing an expression as a product of its simplest factors is called factorizing.

14 For real numbers a, b and c, to solve $a x^{2}+b x+c$, where $a \neq 0$, the following methods can be used: factorization, completing the square, or the quadratic formula.
15 If the roots of $a x^{2}+b x+c$ are $x_{1}=\frac{b \sqrt{b^{2} 4 a c}}{2 a}$ and $x_{2}=\frac{b+\sqrt{b^{2} 4 a c}}{2 a}$ then $x_{1}+x_{2}=\frac{b}{a}$ and $x_{1} \cdot x_{2}=\frac{c}{a}$.

Review Exercises on Unit 2

1 Solve each of the following.
a $\quad(x-3)^{3}=27$
b $\quad(2 x+1)^{2}=16$
c $\quad 9^{3 x}=81$
d $\sqrt[3]{(2 x)^{3}}=14$
e $\quad(x-3)^{3}=27(2 x-1)^{3}$

2 Solve each of the following linear equations.
a $2(3 x-2)=3-x$
b $\quad 4(3-2 x)=2(3 x-2)$
c $(3 x-2)-3(2 x+1)=4(4 x-3)$
d $\quad 4 \quad 3 x=2\left(1 \quad \frac{3}{2} x\right)$
e $\quad 2\left(\begin{array}{ll}1 & 4 x\end{array}\right)=4\left(\frac{1}{2}+2 x\right)$

3 Without solving, determine the number of solutions to each of the following systems of linear equations.
a $\quad \begin{cases}3 x & 4 y=5 \\ 2 x+3 y & =3\end{cases}$
b $\left\{\begin{array}{l}6 x+9 y=7 \\ 2 x+3 y=13\end{array}\right.$
c $\quad\left\{\begin{aligned} x+4 y & =7 \\ 2 x \quad 8 y & =14\end{aligned}\right.$

4 Applying all the methods for solving systems of linear equations, solve each of the following.
a $\left\{\begin{array}{c}2 x \quad 3 y=5 \\ 2 x+3 y=5\end{array}\right.$
b $\left\{\begin{array}{l}\frac{3}{2} x=5 \quad 2 y \\ x \quad 3 y=5\end{array}\right.$
c $\left\{\begin{array}{l}0.3 x \quad 0.4 y=1 \\ 0.2 x+y=3\end{array}\right.$

5 Solve each of the following equations that involve absolute value.
a $\quad\left|\begin{array}{ll}2 x & 3\end{array}\right|=3$
b $\quad 3|x \quad 1|=7$
c $\quad\left|\frac{1}{2} \quad 3 x\right|=\frac{7}{2}$
d $\quad|x+7|=1$
e $\quad|2 \quad 0.2 x|=5$
f $\quad\left|\begin{array}{ll}2 x & 3\end{array}\right|=3|1 \quad 2 x|$
g $\quad \left\lvert\, \begin{array}{ll}x & 5|=|3+2 x|\end{array}\right.$
h $\quad\left|\begin{array}{ll}2 x & 4|=2| 2\end{array} \quad x\right| \mathbf{i} \quad\left|\begin{array}{ll}x+12 \mid & 2 \mid 3 x\end{array} \quad 1\right|=0$
j $\quad \left\lvert\, \begin{array}{ll}5 x & 12|+|x+2|=8\end{array}\right.$
k $\quad 3 \left\lvert\, \begin{array}{ll}x & 7|+2| 1 \quad 3 x \mid=5\end{array}\right.$

6 Factorize the following expressions.
a $x^{2}-16 x$
d $\quad 12 x+48 x^{2}$
b $\quad 4 x^{2}+16 x+12$
c $\quad 1-4 x^{2}$
e $x^{2}+11 x-42$

7 Solve the following quadratic equations.
a $x^{2}-16 x=-64$
b $\quad 2 x^{2}+8 x-8=0$
c $\quad 4 x-3 x^{2}-9=10 x$
d $x^{2}+15 x+31=2 x-11$
e $\quad 7 x^{2}+x-5=0$

8 By computing the discriminant $b^{2}-4 a c$ for each of the following, determine how many solutions the equation has.
a $x^{2}-16 x+24=0$
b $\quad 2 x^{2}+8 x-12=0$
c $-4 x^{2}-x-2=0$
d $\quad 3 x^{2}-6 x+3=0$

9 If two roots of a quadratic equation are -2 and 3 , determine the quadratic equation.
10 If the sum of two numbers is 13 and their product is 42 , determine the numbers.
11 Almaz has taken two tests. Her average score is 7 (out of ten). The product of her scores is 45 . What did she score in each test?
12 If a and b are roots of $3 x^{2}-6 x+2=0$, then find
a $\quad a+b$
b $a b$
C $\frac{1}{a}+\frac{1}{b}$
d $\frac{1}{a+2}+\frac{1}{b+2}$
e $\quad a^{2}+b^{2}$
f $\quad a^{3}-b^{3}$

13 Determine the values of p and q for which $(-4,-3)$ will be solution of the system

$$
\left\{\begin{array}{l}
p x+q y=26 \\
q x \quad p y=7
\end{array}\right.
$$

14 An object is thrown vertically upward from a height of $h_{o} \mathrm{ft}$ with an initial speed of $v_{o} \mathrm{ft} / \mathrm{sec}$. Its height h (in feet) after t seconds is given by
$h=-16 t^{2}+v_{o} t+h_{o}$. Given this, if it is thrown vertically upward from the ground with an initial speed of $64 \mathrm{ft} / \mathrm{sec}$,
a At what time will the height of the ball be 15 ft ? (two answers)
b How long will it take for the ball to reach 63 ft ?
15 Determine the value of k so that the quadratic equation $4 x^{2}-2 x+k^{2}-2 k+1=0$ can have exactly one solution.
16 The speed of a boat in still water is $15 \mathrm{~km} / \mathrm{hr}$. It needs four more hours to travel 63 km against the current of a river than it needs to travel down the river. Determine the speed of the current of the river.

