Federal Democratic Republic of Ethiopia
 Ministry of Education

Minimum Learning Competencies

Physics, Grades 9 to 12

Minimum Learning Competencies for Grades 9 \& 10 Physics

Area of competency	Grade 9	Grade 10
	1. Vectors - Represent vectors analytically and graphically - List some properties of vectors - Find the sum and difference of two vectors; in the same direction, in opposite direction and perpendicular to each other. - Resolve a vectors in to its rectangular component - Find the magnitude and direction of resultant of several vectors using component method - Solve problems related to vectors - Demonstrate scientific enquiry skills such as ; observing, asking question, problem solving, applying concepts, measuring, making conclusion, interpreting illustrations data. 2. Motion in a straight line - define the term uniformly accelerated motion - distinguish between velocity and acceleration - use equations of uniformly accelerated motion to solve numerical problems - identify displacement, velocity, acceleration as vector quantity in equations of uniformly accelerated motion - identify that free fall is a uniformly accelerated motion - distinguish between positive and negative accelerated motion - Mention the variation of acceleration due to gravity on the surface of the earth. - Plot S-t graph from distance and time data provided in a table. - Plot V-t graph from velocity and time data provided in a table - Interpret S-t, V-t and a-t graphs - Solve problems related to motion from graphs	1. Motion in two dimension. - Describe motion in two dimension - Define the term projectile and give common examples of projectile - Identify any projectile is moving under the influence of gravity - Describe the difference among the terms vertical, horizontal and inclined projection - Identify that projectile motion consists of two independent motions. - Solve problems related to projectile motion. - Identify the path followed by a projectile projected at an angle is parabolic. - Define uniform circular motion, tangential velocity, centripetal acceleration, centripetal force and centrifugal force. - Define rotational motion, angular displacement, angular velocity and angular acceleration. - Describe the relationship between angular quantities and linear quantities. - Solve problems related to uniform circular motion and rotational motion. - Describe rotational with constant angular acceleration - Solve problems using equations of motion with constant angular acceleration. - Define moment of inertia, torque, angular momentum and center of gravity. - State conservation of angular momentum and condition of equilibrium. - Describe rotational kinetic energy in terms of moment of inertia and torque in terms of angular acceleration and moment of inertia - State laws of universal gravitation and Kepler's Laws of planetary motion. - Describe the variation of acceleration due to gravity with altitude - Solve problems related to moment of inertia of a system of particles with respect to a given axis. - Solve problems related to rotational kinetic energy, torque, angular momentum, conservation of angular momentum, conditions of equilibrium and center of gravity.

Area of competency	Grade 9	Grade 10
	- Determine the relative velocity of body with respect to another moving in a straight line - Demonstrate scientific enquiry skills such as observing, predicting, classifying, problem solving, interpreting graph (illustrations), interpreting data, drawing conclusion, applying concepts. 3. Force and Newton's laws of motion - Identify the force in nature - State Newton's first law and explain the relation between mass and inertia - Associate Newton's first law to their daily life activities - Define momentum as the product of mass and velocity - State Newton's second law in terms of the change in momentum - Solve common problems involving net force, mass and linear acceleration. - Identify units appropriate for measuring force - Describe the effect of balanced and unbalanced forces on a body - Determine the relationship between net force, mass, and acceleration - Define impulse and describe the relation between impulse and linear momentum - Define the term weight - Distinguish between mass and weight. - Explain the state of weightlessness - Resolve a force in to its rectangular components - Define concurrent and collinear forces - Find the magnitude and direction of resultant force of several forces acting on a body - Solve common problems involving bodies suspended by strings attached to a celling - describe the effects of friction on motion	- Distinguish between orbital velocity and escape velocity - Describe about geostationary satellite and explain their uses - Apply the law of universal gravitation to solve common problems. - Demonstrate scientific enquiry skills such as observing, predicting, comparing, communicating, problem solving, asking questions, applying concepts, analyzing. 2. Electrostatics - State the law of conservation of charge an law of electrostatics - Describe the charging processes and charge distribution on a conductor of different shape - Identify that lightening is an electrostatic phenomenon and explain the role of lightening rod - Describe about the electrostatic danger in aircraft $* * * * *$ and some application of electrostatics. - State coulomb's law - Define the terms: Electric field, electric field strength, electric field lines, test charge - Determine the magnitude and direction of force between two point charges. - Identify electric field inside a conductor is zero - Define the terms: electric potential and distinguish between absolute potential and potential difference. - Determine the electric potential at a given point due to a point charge and system of charges - Describe about equipotential lines and surfaces - Calculate the electric potential energy between two charges - Define the terms: capacitor, capacitance, parallel plate capacitor, dielectric. - Calculate the effective capacitance of capacitors in series, parallel and in series parallel combinations. - Determine the capacitance of a parallel plate capacitor with and without a dielectric and the energy stored - List some applications of capacitors - Demonstrate scientific enquiry skills such as observing, inferring, communicating, comparing, solving problem, applying concepts,

| Area of competency | Grade 9 | Grade 10 |
| :--- | :--- | :--- | :--- | :--- |

Area of competency	Grade 9	Grade 10
	oscillating pendulum and spring mass system - Identify collision as elastic and inelastic collision - Mention momentum and kinetic energy is conserved during elastic collision - Define mechanical power and use the definition to calculate the power of a mechanical system - Explain about the wise use of energy - Demonstrate scientific enquiry skills such as; observing, predicting, classifying, communicating, problem solving, asking question, drawing conclusion, interpreting illustration, relating cause and effect, applying concept, designing experiments 5. Simple machines - Describe the purpose of machine - List the simple machines and explain their uses - Determine the relationship between MA, VR and efficiency of a machine - Calculate the MA, VR and efficiency of simple machines - Categorize simple machines as force multiplier or speed multiplier or direction changer - Explain the role of simple machines in technology - Demonstrate scientific enquiry skills such as: observing, classifying, communicating, comparing, making, conclusion, measuring, asking questions designing experiment, problem solving, applying concepts, interpreting illustration, making model. 6. Fluid statics - Identify the term fluid refers to both liquids and gases - Define the terms: pressure, density, relative density - Identify units used to measure pressure - Solve common problems involving pressure, force	- Calculate the magnetic field strength at a point due to straight current carrying wire current loop and inside a solenoid - Identify that a moving charge in a magnetic field current carrying conductor experiences a magnetic force. - Describe how moving charged particles are deflected by uniform magnetic field. - Solve problems on motion of charged particles in a magnetic field and current carrying conductor in a magnetic field - Determine the magnitude and direction of a force between two parallel current carrying wires separated by a distance d. - Show with the aid of diagram the direction of the forces acting on each sides of a rectangular current carrying wire placed in a magnetic field. - Determine the magnitude and direction of the torque acting on a current loop in a magnetic field - Describe how a moving coil galvanometer operates - Describe the working principle of a DC motor. - Define the terms: magnetic flux - State Faraday's Law of induction and Lenz's Law - Determine the magnitude and direction of induced emf or current using faraday's law of induction and Lenz's law respectively - Define the terms: Electromagnetic induction, inductance, self and Mutual Inductance. - Explain the working principle of an AC and DC generator - Explain the principle of operation of transformer - Solve problems involving inductance and transformer - Demonstrate scientific enquiry skills such as: observing, inferring, comparing, making models, applying concepts, measuring, interpreting illustrations, solving problems, relating cause and effects. 5. Introduction to Electronics - Define the term electronics - State what is meant by harmonic emission - Describe the function of CRT and its use - Describe semiconductors in terms of charge carrier and resistance - Describe how semiconductors can be used in half wave rectification - Describe the behavior of semiconductor devices such as thermistor,

Area of competency	Grade 9
	and area. - Identify that pressure due to a liquid at rest depends on depth. - Demonstrate the relationship between pressure, force and area. - Calculate the pressure due to a liquid at rest at any depth - Convert pressure values from one unit to another - Explain pascal's principle and its application - Explain Archimede's principle and its application - Explain floatation principle - Identify the forces acting on a body that is immersed or floating in a fluid - Demonstrate the understanding of buoyant force and the relationship between weight of fluid displaced and mass of floating body. - Demonstrate the understanding of buoyant force and the relationship between weight of fluid displaced and mass of floating body. - Define the terms: surface tension, cohesion, adhesion - Describe devices used to measure pressure and pressure difference - Describe the relationship among gauge pressure, absolute pressure, and atmospheric pressure - Demonstrate scientific enquiry skills such as: observing, communicating, comparing, measuring, asking questions, designing experiments, applying concepts, problem solving. 7. Temperature and heat - Compare heat and temperature - Explain about thermal expansion of solids, liquids and gases - Identify units used to measure energy in thermal system - Solve problems involving linear, real and volume

Area of competency	Grade 9	Grade 10
	expansion - Solve problems related to expansion of liquids - Define the terms :specific heat capacity, heat capacity, and latent heat - State the law of heat exchange - Solve problems involving heat exchange - Demonstrate scientific inquiry skills such as observing, communicating, comparing, measuring, inferring, making conclusion, problem solving, applying concept, and designing experiments 8. Wave motion and sound - Define the terms: wave pulse, train of waves - Differentiate between mechanical and electromagnetic waves and give examples of each - Identify waves as transverse and longitudinal and give examples of each - Define the terms used to describe waves; crest, trough, wavelength and amplitude - Use wave speed formula to solve problems related to wave motion - Describe the common properties of waves: reflection. refraction diffraction and interference - Describe the production and propagation of sound - Compare the speeds of sound in different media - Determine the speed of sound in air at any give temperature - Explain reflection, refraction diffraction, and interference of sound - List some applications of reflections of sound - Define the terms used to describe the characteristics of sound - Demonstrate scientific inquiry skills as observing, classifying, communicating comparing asking questions, measuring and applying concepts	combination of lenses in simple microscope and simple telescope - Describe with the aid of a diagram how image is formed in the retina of human eye and identify the types of lenses used for correction of eye defects. - Describe how dispersion of light occurs in a prism with the aid of a diagram - Explain how colors can be mixed and objects obtain their colors - Demonstrate scientific enquiry skills such as: Observing, inferring, classifying, comparing, interpreting illustrations, applying concepts, problem solving, asking questions, measuring, making models, experimenting, relating cause and effect.

Minimum Learning Competencies for Grades 11\&12 Physics

Area of competency	Grade 11	Grade 12
Measurement/thermodyn amics Vectors/wave motion	1. Measurement and practical work - Explain the importance of measurement in life. - explain about sources of errors and their types - differentiate between accepted and experimental values - add and subtract scientific notation, keeping significant figures properly - Multiply scientific figures keeping significant figures properly. - Define the term scientific method and State the steps of scientific methods - Explain the possible sources of errors and State the types of errors - Distinguish between systematic and random error 2.Vector quantities - Distinguish between vector and scalar quantities, and give examples of each - Determine the resolved part of a vector in any given direction add vectors by graphical representation to determine a resultant - determine graphically a resultant of two vectors - add/subtract two or more vectors by the vector addition rule - determine the magnitude and direction of the resolution of two or more vectors using Pythagoras theorem and trigonometry	1.Thermodynamics - Define the scientific terms :isothermal change, adiabatic change, change of state of a gas, molar gas constant - State the first law of thermodynamics - State the second law of thermodynamics - Solve problems related to the first and second laws o f thermodynamics - Describe ways of changing the internal energy of a gas - Describe the fundamental principles of heat engine - Solve problems involving calculations of P, V or T for a gas undergoing adiabatic changes - Use the expression for the pressure of an ideal gas in terms of its density and mean square speed of molecules to solve problems - Solve problems to determine $\mathrm{P}, \mathrm{V}, \mathrm{T}$ or r.m.s speed of gas molecules for an ideal gas, given relevant data - Show that the molar heat capacity at constant pressure is greater than the molar heat capacity at constant volume - Evaluate Cp-Cv for an ideal gas - Evaluate $\mathrm{Cp} / \mathrm{Cv}$ for an ideal gas 2. Oscillations and waves - Define and use the terms SHM, resonance - give simple examples of vibrating systems - explain the energy changes that occur when a body performs SHM - draw and interpret graphs to show how KE and PE of an oscillator vary with time - use expressions for the frequency and periodic time of oscillations of objects performing SHM - solve problems on SHM involving periods of vibration and energy changes - explain the effect of damping on the amplitude of a system which is vibrating - identify the properties of standing waves and, for both mechanical and

Area of competency	Grade 11	Grade 12
	- solve problems related to scalar and vector products of two vectors in a plane - explain properties of vector operations - identify vectors represent the real quantities	sound waves - explain the conditions required for standing waves to occur - explain the Doppler effect, and predict in qualitative terms the frequency change that will occur in a variety of conditions - explain the modes of vibrations of strings and solve problems involving vibrating strings - Explain the way air columns vibrate - solve problems involving vibrating air column
Kinematics/electrostatics	3.Kinematics - use the scientific terms: speed, velocity. distance, displacement, acceleration, instantaneous velocity and acceleration correctly and state their SI units - explain the difference between average speed(or velocity)and instantaneous speed(or velocity) - solve numerical problems involving average velocity, instantaneous velocity and acceleration - explain uniform circular motion in the horizontal and vertical planes with reference to the forces involved - explain uniform circular motion in the horizontal and vertical planes with reference to the forces involved - identify circular motion requires the application of a constant force directed toward the center of the circle - solve problems involving objects moving in two dimensions - describe the behavior of motion of a freely falling body	3.Electrostatics - define the terms: electric field strength, electric potential, electric dipole, electric dipole moment ,dielectric, electric flux, dielectric constant - explain coulomb's law using the ideas of vectors - map an electric field lines pattern using electric lines of force - define capacitors and capacitances - solve problems related to the capacitances of parallel plate capacitors - state Gauss law qualitatively - compare the characteristics of electric potential energy with those of gravitational potential energy - explain the electric field and the electric forces produced by a single point charge, two point charges, and two oppositely charged parallel plate - describe and explain, in qualitative terms, the electric field that exists inside and on the surface of a charged conductor - apply the formula the electric field strength at a point due to an isolated point charge - use the formula for the electric potential at a point due to an isolated point charge
Energy/electricity	4. Work, energy and power - define and use the terms work, energy, and power - Use the principle of conservation of energy	4.Steady electric current and circuit properties - Explain the meaning of a coulomb ,a volt, an ohm, potential difference, resistance, emf, KWH - identify the SI units of electric current, current density, resistance,

Area of competency	Grade 11	Grade 12
	in the solution of problems - Distinguish between elastic and inelastic collisions and solve problems involving such collisions - identify the relationship between work and change in kinetic energy - distinguish between conservative and non conservative forces - explain the energy transformation occurring during oscillations - Solve problems involving elastic and inelastic collisions in one and two dimension by using the principles of conservation of momentum and energy.	resistivity, conductivity, temperature coefficient of resistance - distinguish between electrostatic and non electrostatic fields - differentiate between emf and p.d of a source - solve electrical circuit problems involving the relationship between emf, current and résistance for a complete circuit - Distinguish between emf and p.d,ohmic (linear)and non ohmic (non linear) devices - state kirchhoff's laws - solve problems involving network resistors - solve problems in which meter resistance is involved - describe how a galvanometer can be modified to measure a wide range of currents and potential differences - calculate shunt and multiplier value for use with a meter to give different current and voltage ranges - explain the principle of Wheatstone bridge solve problems involving it - explain the principle of potentiometer and how it can be used for measurement of emf, p.d, resistance and current
Dynamics/magnetism	5.Dynamics - state and use Newton's laws - state Newton's 2nd law interims of momentum - apply Newton's laws of motion to explain and predict the behavior of bodies acted by external forces - use the principle of momentum conservation - explain qualitatively how frictional forces depend on the nature of surfaces and normal contact force - use free body diagram representing forces on a point mass to solve problems - solve numerical problems involving Newton's laws of motion - determine the forces needed to keep an object moving in a horizontal and vertical circles - define the centre of mass of a body and that	5.Magnetism - describe and illustrate the magnetic field produced by an electric current in a long straight conductor and in a solenoid - predict by applying the right-hand rule, the direction of the magnetic field produced when electric current flows through a long straight conductor and through a solenoid - use the expression for the force on a current carrying conductor in a magnetic field - use the expression for the force on a charged particle in a magnetic field - state Ampere's law and use it in solving problems - solve problems on the motion of charged particles in electric and magnetic fields - distinguish between the terms: dia, para, and Ferro magnetic materials - describe the causes of earth's magnetism - describe an experiment to obtain the flux pattern around a bar magnet, straight carrying wire, a solenoid carrying a current

Area of competency	Grade 11	Grade 12
	of a system of particles	
Mechanics/ electromagnetism	6.Rotational motion - Define and use the terms: angular displacement, angular velocity, angular acceleration, moment of inertia ,angular momentum, angular impulse and torque - Use the equations for uniformly accelerated angular motion - Use the equations relating linear and angular motions - State the similarities and differences between the behavior of rotating bodies and bodies traveling with linear velocity - Identify the factors which determine the moment of inertia of a body - State and apply the law of conservation of angular momentum - determine the velocity and acceleration of a point in the rotating body - demonstrate the direction of angular velocity ,angular acceleration and angular momentum using the right -hand rule	6.Electromagnetic induction and AC circuits - Use the terms: induced emf, back emf, magnetic flux, flux linkage, eddy current - State the laws of electromagnetic induction - Use the laws of electromagnetic induction which predict the magnitude and direction of the induced emf - Use the expression for the force on a current carrying conductor in a magnetic field - Use the force on a charged particle in a magnetic field - Use the flux density near a long straight wire, at the centre of circular coil, inside and at the end of a long solenoid - Solve problems on the motion of charged particles in electric and magnetic fields - Describe in words ,or by sketch, the general shape and relative intensities of magnetic field strength around a long straight current carrying wire, a long solenoid - apply Lenz's law to explain, predict, and illustrate the direction of the electric current induced by a changing magnetic field, using the righthand rule - explain Ampere's law - Use an expression for the induced emf in a conductor moving through a uniform magnetic field by considering the forces on the charges - Solve problems involving calculations of the induced emf,indued current - compare direct current (DC) and alternating current (AC) in qualitative terms - define the terms: self inductance L,mutual inductance M,and henry - Use the terms:r.m.s.current,r,m,s,potential difference, peak current, peak potential difference, half cycle average current, phase difference, phase lag, phase lead - Apply the relationship between r.m.s.and peak values for the current and potential difference for a sinusoidal waveform - Use the terms: reactance, impedance, power factor with their correct scientific meaning - Solve problems involving the magnitude and phase of current and

Area of competency	Grade 11	Grade 12
		applied p.d in an a.c circuits which include resistors, capacitors and inductors - Draw phasor diagrams for R,L and C circuits - explain what are meant by r.m.s. values - explain the behavior of a capacitor in an a.c circuit - explain the behavior of an inductor in an a.c circuit
Static/wave optics	7.Equilibrium - Distinguish between coplanar and concurrent forces - Find the resultant of a number of concurrent forces acting at a point - Solve problems involving the equilibrium of coplanar forces - State the conditions for there to be no rotation of a body - State the equilibrium conditions for a body acted on by coplanar forces 8.Properties of bulk matter	7.Wave optics - Describe an experiment to illustrate interference of waves - Draw diagrams to illustrate reflection and refraction of waves - Explain diffraction at a single slit - Explain beats - solve problems involving interference and diffraction, of waves - state the conditions necessary for the interference of light to be shown - explain the principle of Young's double slit experiment - carry out calculations involving Young's double slit experiment 8.Atomic physics
Mechanics/atomic physics	- Define the scientific terms :elastic limit, stress, strain, Young modulus, Shear modulus, viscous flow, viscosity, stream line flow, turbulent flow - Use equation of continuity to solve numerical problems - Describe the application of Bernoulli's principle in everyday life situation - State and use Bernoulli's equation to solve problems - Define surface tension and surface energy - Define the angle of contact and account for the shapes of liquid surfaces - Determine the relationship for the capillary rise and use it in problems - Define the terms: calorimetery, change of phase, latent heat, heat capacity, specific heat capacity	- Describe Rutherford's model of atom - State the nature ,charge, and properties of alpha, beta and gamma radiation - State the law of radioactive decay and explain the meaning of a half life - Write equations to illustrate alpha and beta decay - State how many protons and neutrons their are in a nuclide for which you are given the symbol - Interpret equations representing nuclear reactions indicating the nature of energy released - Identify the relationship between mass and energy - Explain what is meant by photo electric effect - Describe an experiment to demonstrate the emission of photo electrons - State how the rate of emissions of photo electrons and their energy depend upon the intensity and frequency of the incident radiation - Work through simple problems on half -life - Associate the release of energy in a nuclear reaction with a change in mass

Area of competency	Grade 11	Grade 12
	- Distinguish between the concepts: heat, temperature, internal energy, work - Identify the units for heat, heat capacity, specific heat capacity, latent heat - Solve problems involving thermal conductivity, change of state and expansivity - Describe properties that can be used for temperature measurement - Explain the methods used for the measurement of specific heat capacities - Relate latent heat to intermolecular forces	- Discus problems posed by radioactive waste - Represent nuclear reactions in the form of equations - Distinguish between fission and fission

