

COORDINATE GEOMETRY

Unit Outcomes:

After completing this unit, you should be able to:

* apply the distance formula to find the distance between any two given points in the coordinate plane.
4 formulate and apply the section formula to find a point that divides a given line segment in a given ratio.
4 write different forms of equations of a line and understand related terms.
* describe parallel or perpendicular lines in terms of their slopes.

Main Contents

4.1 Distance between two points

4.2 Division of a line segment

4.3 Equation of a line
4.4 Parallel and perpendicular lines

Key Terms
Summary
Review Exercises

INTRODUCTION

In Unit 3, you have seen an important connection between algebra and geometry. One of the great discoveries of $17^{\text {th }}$ century mathematics was the subject of analytic geometry. It is often referred to as Cartesian Geometry, which is essentially a method of studying geometry by means of a coordinate system and associated algebra.
In Analytic Geometry, we describe properties of geometric figures such as points, lines, circles, etc., in terms of ordered pairs and equations.

4.1 DISTANCE BETWEEN TWO POINTS

In Grade 9, you have discussed the number line and you have seen that there is a one-to-one correspondence between the set of real numbers and the set of points on the number line. You have also seen how to locate a point in the coordinate plane. Do you remember the fact that there is a one-to-one correspondence between the set of points in the plane and the set of all ordered pairs of real numbers?

The following Activity will help you to review the facts you discussed in Grade 9.

ACTIVITY 4.1

1 Consider the number line given in Figure 4.1.

Figure 4.1
a Find the coordinates of points P, A, Q and B.
b Find the distance between points

$$
\text { i } \quad P \text { and } Q \quad \text { ii } \quad Q \text { and } B \quad \text { iii } \quad P \text { and } B
$$

2 On a number line, the two points P and Q have coordinates x_{1} and x_{2}.
a Find the distance between P and Q (or $P Q$).
b Find the distance between Q and P.
c Discuss the relationship between your answers in a and b above

3 How do you plot the coordinates of points in the coordinate plane?
4 What are the coordinates of the origin of the $x y$-plane?
5 Draw a coordinate plane and plot the following points.
P (3,-4), Q ($-3,-2$), R ($-2,0$), S $(4,0), T(2,3), U(-4,5)$ and $V(0,0)$.

6 The position of each point on the coordinate plane is determined by its ordered pair of numbers.
a What is the x-coordinate of a point on the y-axis?
b What is the y-coordinate of a point on the x-axis?
7 Let $\mathrm{P}(2,3)$ and $\mathrm{Q}(2,8)$ be points on the coordinate plane.
a Plot the points P and Q.
b Is the line through points P and Q vertical or horizontal?
c What is the distance between P and Q ?
8 Let $\mathrm{R}(-2,4)$ and $\mathrm{T}(5,4)$ be points on the coordinate plane.
a Plot the points R and T.
b Is the line through R and T vertical or horizontal?
c What is the distance between points R and T ?

Distance between points in a plane

Suppose $\mathrm{P}\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$ are two distinct points on the $x y$-coordinate plane. We can find the distance between the two points P and Q by considering three cases.

Case il When P and Q are on a line parallel to the x-axis (that is, $\overline{P Q}$ is a horizontal segment) as in Figure 4.2 .

Since the two points P and Q have the same y-coordinate (ordinate), the distance between P and Q is

$$
P Q=\left|x_{2}-x_{1}\right|
$$

Case ii When P and Q are on a line parallel to the y-axis (that is, $\overline{P Q}$ is a vertical segment) as in Figure 4.3.

Since the two points have the same
x-coordinate (abscissa), the distance between P and Q is

$$
P Q=\left|y_{2}-y_{1}\right|
$$

Figure 4.2

Figure 4.3

Case iii When $\overline{P Q}$ is neither vertical nor horizontal (the general case).

To find the distance between the points P and Q, draw a line passing through P parallel to the x-axis and draw a line passing through Q parallel to the y-axis.

The horizontal line and the vertical line intersect at $R\left(x_{2}, y_{1}\right)$.

Using case i and case ii, we have

$$
P R=\left|x_{2}-x_{1}\right| \text { and } R Q=\left|y_{2}-y_{1}\right|
$$

Since $P R Q$ is a right angled triangle at R, you can use Pythagoras' Theorem to find the distance between points P and Q as follows:
$P Q^{2}=P R^{2}+R Q^{2}=\left|x_{2}-x_{1}\right|^{2}+\left|y_{2}-y_{1}\right|^{2}=\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}$
Therefore, $P Q=\sqrt{\left(\begin{array}{ll}x_{2} & x_{1}\end{array}\right)^{2}+\left(\begin{array}{ll}y_{2} & y_{1}\end{array}\right)^{2}}$
The radical has positive sign (why?).
In general, the distance d between any two points $\mathrm{P}\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$ is given by

$$
d=\sqrt{\left(\begin{array}{ll}
x_{2} & x_{1}
\end{array}\right)^{2}+\left(\begin{array}{ll}
y_{2} & y_{1}
\end{array}\right)^{2}}
$$

This is called the distance formula.
Example 1 Find the distance between the given points.
a $\mathrm{A}(1, \sqrt{2})$ and $\mathrm{B}(1,-\sqrt{2})$
b $\quad \mathrm{P}\left(\frac{17}{4}, 2\right)$ and $\mathrm{Q}\left(\frac{1}{4}, 2\right)$
c $\quad \mathrm{R}(\sqrt{2}, 1)$ and $\mathrm{S}(\sqrt{2}, \sqrt{2})$
d $\quad \mathrm{A}(a, b)$ and $\mathrm{B}(b, a)$

Solution:

$$
\text { a } \begin{aligned}
A B=d & \left.=\sqrt{\left(\begin{array}{ll}
x_{2} & \left.x_{1}\right)^{2}+\left(\begin{array}{ll}
y_{2} & y_{1}
\end{array}\right)^{2}
\end{array}\right.} \begin{array}{lll}
\left.\sqrt{(1) 1)^{2}+(\sqrt{2}} \sqrt{2}\right)^{2} & & \text { Or, more simply } \\
& =\sqrt{\left(0 B=\mid y_{2}\right.} \begin{array}{ll}
y_{1}
\end{array}|=| \sqrt{2} & \sqrt{2}
\end{array} \right\rvert\, \\
& =2 \sqrt{2} \text { units }
\end{aligned}
$$

$$
\begin{aligned}
& \text { b } \quad P Q=d=\sqrt{\left(\begin{array}{ll}
x_{2} & x_{1}
\end{array}\right)^{2}+\left(\begin{array}{ll}
y_{2} & y_{1}
\end{array}\right)^{2}} \\
& =\sqrt{\left(\frac{1}{4} \frac{17}{4}\right)^{2}+(2(2))^{2}} \\
& =\sqrt{\left(\frac{16}{4}\right)^{2}+(0)^{2}}=\sqrt{(4)^{2}}=\sqrt{16}=4 \text { units } \\
& \text { c } \quad R S=d=\sqrt{\left(\begin{array}{ll}
x_{2} & x_{1}
\end{array}\right)^{2}+\left(\begin{array}{ll}
y_{2} & \left.y_{1}\right)^{2}
\end{array}=\sqrt{(\sqrt{2} \quad(\sqrt{2}))^{2}+(\sqrt{2} \quad(1))^{2}}\right.} \\
& =\sqrt{(2 \sqrt{2})^{2}+(1 \quad \sqrt{2})^{2}}=\sqrt{11 \quad 2 \sqrt{2}} \\
& \text { d } \quad A B=d=\sqrt{\left(\begin{array}{ll}
x_{2} & x_{1}
\end{array}\right)^{2}+\left(\begin{array}{ll}
y_{2} & y_{1}
\end{array}\right)^{2}}=\sqrt{(b \wedge a)^{2}+(a \quad(b))^{2}} \\
& =\sqrt{(b+a)^{2}+(a+b)^{2}}=\sqrt{2(a+b)^{2}}=\sqrt{2}|a+b| \text { units. }
\end{aligned}
$$

Exercise 4.1

1 In each of the following, find the distance between the two given points.
a $\quad \mathrm{A}(1,-5)$ and $\mathrm{B}(7,3)$
b $\quad \mathrm{C}\left(2, \frac{1}{2}\right)$ and $\mathrm{D}\left(\frac{1}{2}, 2\right)$
c $\mathrm{E}(\sqrt{2}, 1)$ and $\mathrm{F}(\sqrt{6}, \sqrt{3})$
d $\quad \mathrm{G}(a,-b)$ and $\mathrm{H}(-a, b)$
e the origin and $K\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
g $\quad \mathrm{P}(\sqrt{2}, \sqrt{3})$ and $\mathrm{Q}(2 \sqrt{2}, 2 \sqrt{3})$
f $\mathrm{L}(\sqrt{2}, 1)$ and $\mathrm{M}(1, \sqrt{2})$
h $\quad \mathrm{R}(\sqrt{2} a, c)$ and $\mathrm{T}(\sqrt{2} b, c)$

2 Using the distance formula, show that the distance between P and Q is:
a $\left|x_{2}-x_{1}\right|$, when $\overline{P Q}$ is horizontal b $\left|y_{2}-y_{1}\right|$, when $\overline{P Q}$ is vertical.
3 Let A $(3,-7)$ and $B(-1,4)$ be two adjacent vertices of a square. Calculate the area of the square.
$4 \quad \mathrm{P}(3,5)$ and $\mathrm{Q}(1,-3)$ are two opposite vertices of a square. Find its area.
5 Show that the plane figure with vertices:
a $\quad \mathrm{A}(5,-1), \mathrm{B}(2,3)$ and $\mathrm{C}(1,1)$ is a right angled triangle.
b $\quad \mathrm{A}(-4,3), \mathrm{B}(4,-3)$ and $\mathrm{C}(3 \sqrt{3}, 4 \sqrt{3})$ is an equilateral triangle.
c $\quad \mathrm{A}(2,3), \mathrm{B}(6,8), \mathrm{C}(7,-1)$ is an isosceles triangle.
6 An equilateral triangle has two vertices at $A(-4,0)$ and $B(4,0)$. What could the coordinates of the third vertex be?
7 What are the possible values of b if the point $\mathrm{A}(b, 4)$ is 10 units away from B $(0,-2)$?

4.2 DIVISION OF A LINE SEGMENT

Recall that, a line segment passing through two points A and B is horizontal if the two points have the same y-coordinate. i.e., a line segment whose end-points are $\mathrm{A}\left(x_{1}, y\right)$ and

B $\left(x_{2}, y\right)$ is a horizontal line segment as shown in Figure 4.5.

What is the mid-point of $\overline{A B}$?

ACTIVITY 4.2

1 Define the ratio of two quantities.
2 What is meant by the ratio of the length of two line segments?

3 In Figure 4.6, find the ratio of the length of $\overline{A P}$ to $\overline{P B}$.

Figure 4.6
4 What is meant by a point P that divides a line segment $A B$ internally?
5 Plot the following points on the coordinate plane and find the mid-point of the line segment joining the points.
a $\mathrm{A}(2,-1)$ and $\mathrm{B}(2,5)$
b
$C(-3,3)$ and $D(3,3)$
c $\mathrm{E}(2,0)$ and $\mathrm{F}(-2,4)$.

Consider the horizontal line segment with end-points $\mathrm{A}\left(x_{1}, y\right)$ and $\mathrm{B}\left(x_{2}, y\right)$ as shown in
Figure 4.7. In terms of the coordinates of A and B, determine the coordinates of the point $\mathrm{P}\left(x_{0}, y_{\mathrm{o}}\right)$ that divides $\overline{A B}$ internally in the ratio $m: n$.

Clearly, the ratio of the line segment $A P$ to the line segment $P B$ is given by $\frac{A P}{P B}$
The distance between A and P is $A P=x_{0}-x_{1}$.
The distance between P and B is $P B=x_{2}-x_{0}$.
Therefore, $\frac{A P}{P B}=\frac{m}{n}$ i.e., $\frac{x_{o} x_{1}}{x_{2} x_{o}}=\frac{m}{n}$.
Solving this equation for x_{0} :

$$
\begin{aligned}
& \Rightarrow n\left(x_{0}-x_{1}\right)=m\left(x_{2}-x_{0}\right) \\
& \Rightarrow n x_{0}-n x_{1}=m x_{2}-m x_{0} \\
& \Rightarrow n x_{0}+m x_{0}=n x_{1}+m x_{2}
\end{aligned}
$$

Figure 4.7

$$
\begin{aligned}
\Rightarrow x_{0}(n+m) & =n x_{1}+m x_{2} \\
\Rightarrow x_{0} & =\frac{n x_{1}+m x_{2}}{n+m}
\end{aligned}
$$

Since $\overline{A B}$ is parallel to the x-axis ($\overline{A B}$ is a horizontal line segment) and obyiously, $y_{\mathrm{o}}=y$, therefore, the point $\mathrm{P}\left(x_{0}, y_{\mathrm{o}}\right)$ is $\left(\frac{n x_{1}+m x_{2}}{n+m}, y\right)$.
Given a line segment $P Q$ with end point coordinates $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$, let us find the coordinates of the point R dividing the line segment $P Q$ internally in the ratio $m: n$, i.e., $\frac{P R}{R Q}=\frac{m}{n}$, Where m and n are given positive real numbers.

Figure 4.8
Let the coordinates of R be $\left(x_{0}, y_{0}\right)$. Assume that $x_{1} \quad x_{2}$ and $y_{1} \quad y_{2}$.
If you draw lines through the points P, Q and R parallel to the axes as shown in Figure 4.8, the points S and T have the coordinates (x_{0}, y_{1}) and (x_{2}, y_{0}), respectively.
$P S=x_{0}-x_{1}, R T=x_{2}-x_{0}, S R=y_{0}-y_{1}$ and $T Q=y_{2}-y_{0}$
Since triangles $P S R$ and $R T Q$ are similar (Why?),

$$
\begin{aligned}
& \frac{P S}{R T}=\frac{P R}{R Q} \text { and } \frac{S R}{T Q}=\frac{P R}{R Q} \\
& \frac{x_{o}}{x_{2}} x_{1} \\
& x_{o}
\end{aligned}=\frac{m}{n} \text { and } \frac{y_{o} \quad y_{1}}{y_{2}} y_{o}=\frac{m}{n} .
$$

Solving for x_{0} and y_{0},

$$
\begin{array}{ll}
\Rightarrow & n\left(x_{0}-x_{1}\right)=m\left(x_{2}-x_{\mathrm{o}}\right) \text { and } n\left(y_{\mathrm{o}}-y_{1}\right)=m\left(y_{2}-y_{\mathrm{o}}\right) \\
\Rightarrow & n x_{\mathrm{o}}-n x_{1}=m x_{2}-m x_{\mathrm{o}} \text { and } n y_{\mathrm{o}}-n y_{1}=m y_{2}-m y_{\mathrm{o}} \\
\Rightarrow & n x_{\mathrm{o}}+m x_{\mathrm{o}}=n x_{1}+m x_{2} \text { and } n y_{\mathrm{o}}+m y_{0}=n y_{1}+m y_{2} \\
\Rightarrow & x_{\mathrm{o}}(n+m)=n x_{1}+m x_{2} \text { and } y_{\mathrm{o}}(n+m)=n y_{1}+m y_{2} \\
\Rightarrow & x_{\mathrm{o}}=\frac{n x_{1}+m x_{2}}{n+m} \text { and } y_{o}=\frac{n y_{1}+m y_{2}}{n+m}
\end{array}
$$

The point $\mathrm{R}\left(x_{0}, y_{0}\right)$ dividing the line segment $P Q$ internally in the ratio $m: n$ is given by

$$
\mathrm{R}\left(x_{0}, y_{0}\right)=\left(\frac{n x_{1}+m x_{2}}{n+m}, \frac{n y_{1}+m y_{2}}{n+m}\right)
$$

This is called the section formula.
Example 1 Find the coordinates of the point R that divides the line segment with end- points $\mathrm{A}(6,2)$ and $\mathrm{B}(1,-4)$ in the ratio $2: 3$.
Solution: $\quad \operatorname{Put}\left(x_{1}, y_{1}\right)=(6,2),\left(x_{2}, y_{2}\right)=(1,-4), m=2$ and $n=3$. Using the section formula, you have

$$
\begin{aligned}
\mathrm{R}\left(x_{0}, y_{0}\right) & =\left(\frac{n x_{1}+m x_{2}}{n+m}, \frac{n y_{1}+m y_{2}}{n+m}\right)=\left(\frac{3 \cdot 6+2 \cdot 1}{3+2}, \frac{3 \cdot(2+2 \cdot(4)}{3+2}\right) \\
& =\left(\frac{18+2}{5}, \frac{68}{5}\right)=\left(4, \frac{2}{5}\right)
\end{aligned}
$$

Therefore, R is $\left(4, \frac{2}{5}\right)$.
Example 2 A line segment has end-points $(-2,-3)$ and $(7,12)$ and it is divided into three equal parts. Find the coordinates of the points that trisect the segment.
Solution: The first point divides the line segment in the ratio 1:2, and hence

$$
x_{0}=\frac{n x_{1}+m x_{2}}{n+m} \text { and } y_{0}=\frac{n y_{1}+m y_{2}}{n+m}
$$

So, $\quad x_{0}=\frac{2 \cdot(2)+1 \cdot 7}{1+2}$ and $y_{\mathrm{o}}=\frac{2 \cdot(3)+1 \cdot 12}{1+2}$

$$
\Rightarrow x_{0}=\frac{4+7}{3} \text { and } y_{0}=\frac{6+12}{3} \Rightarrow x_{0}=1 \text { and } y_{0}=2
$$

Therefore, the first point is $(1,2)$.
The second point divides the line segment in the ratio $2: 1$. Thus,

$$
x_{0}=\frac{n x_{1}+m x_{2}}{n+m} \text { and } y_{0}=\frac{n y_{1}+m y_{2}}{n+m}
$$

So, $x_{0}=\frac{1 \cdot(2)+2 \cdot 7}{1+2}$ and $y_{o}=\frac{1 \cdot(3)+2 \cdot 12}{1+2}$

$$
\begin{aligned}
& \Rightarrow x_{\mathrm{o}}=\frac{2+14}{3} \text { and } y_{\mathrm{o}}=\frac{3+24}{3} \\
& \Rightarrow x_{\mathrm{o}}=4 \text { and } y_{\mathrm{o}}=7 .
\end{aligned}
$$

Therefore, the second point is $(4,7)$.

The mid-point formula

A point that divides a line segment into two equal parts is the mid-point of the segment.

ACTIVITY 4.3

1 Consider the points $\mathrm{P}(2,1)$ and $\mathrm{Q}(12,1)$.
a Find the distance between P and Q.
b If R is a point with coordinates $(7,1)$,
i find $P R$. ii find $R Q$.
iii Is $P R$ equal to $R Q$? iv What is the mid-point of $P Q$?
c Divide $\overline{P Q}$ in the ratio 1:1.
2 Find the coordinates of the mid-point of each of the following line segments with end-points:
i $\quad \mathrm{P}\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{1}, y_{2}\right) . \quad$ ii $\quad \mathrm{R}\left(x_{1}, y_{1}\right)$ and $\mathrm{S}\left(x_{2}, y_{1}\right)$.
Which of the above segments are horizontal?
Let $\mathrm{P}\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$ be the end-points of $\overline{P Q}$.
If $P R=R Q$ (the case where $m=n$), then R is the mid-point of the line segment $P Q$.
Now let us derive the mid-point formula.

$$
\begin{aligned}
\mathrm{R}\left(x_{0}, y_{0}\right) & =\left(\frac{n x_{1}+m x_{2}}{n+m}, \frac{n y_{1}+m y_{2}}{n+m}\right) \\
& =\left(\frac{n x_{1}+n x_{2}}{n+n}, \frac{n y_{1}+n y_{2}}{n+n}\right)=\left(\frac{n\left(x_{1}+x_{2}\right)}{2 n}, \frac{n\left(y_{1}+y_{2}\right)}{2 n}\right)(\text { as } m=n) \\
& =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
\end{aligned}
$$

This is the formula used to find the mid- point of the line segment $P Q$ whose end points are $\mathrm{P}\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$.
The mid- point of the line segment joining the points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by

$$
\mathrm{M}\left(x_{0}, y_{0}\right)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

Example 3 Find the coordinates of the mid-point of the line segments with end-points:
a $\mathrm{P}(-3,2)$ and $\mathrm{Q}(5,-4)$
b $\quad \mathrm{P}(3-\sqrt{2}, 3+\sqrt{2})$ and $\mathrm{Q}(1+\sqrt{2}, 3-\sqrt{2})$.

Solution:

a $\quad \mathrm{M}\left(x_{0}, y_{0}\right)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

$$
\begin{aligned}
& x_{0}=\frac{x_{1}+x_{2}}{2} \text { and } y_{o}=\frac{y_{1}+y_{2}}{2} \\
& x_{0}=\frac{3+5}{2}=1 \text { and } y_{0}=\frac{24}{2}=1
\end{aligned}
$$

Therefore $\mathrm{M}\left(x_{\mathrm{o}}, y_{\mathrm{o}}\right)=(1,-1)$.
b $\quad \mathrm{M}\left(x_{0}, y_{0}\right)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

$$
\begin{aligned}
& x_{0}=\frac{x_{1}+x_{2}}{2} \text { and } y_{o}=\frac{y_{1}+y_{2}}{2} \\
& x_{0}=\frac{3 \sqrt{2}+1+\sqrt{2}}{2} \text { and } y_{0}=\frac{3+\sqrt{2}+3 \sqrt{2}}{2} \\
& x_{0}=\frac{4}{2}=2 \quad \text { and } \quad y_{0}=\frac{6}{2}=3
\end{aligned}
$$

Therefore $\mathrm{M}\left(x_{\mathrm{o}}, y_{\mathrm{o}}\right)=(2,3)$.

Group Work 4.1

1 A line segment has end-points $\mathrm{P}(-3,1)$ and $\mathrm{Q}(5,7)$.
a What is the length of the line segment?

b Find the coordinates of the mid-point of the segment.
2 A line segment has one end-point at $\mathrm{A}(4,3)$. If its mid-point is at $\mathrm{M}(1,-1)$, where is the other end-point?

3 Find the points that divide the line segment with end-points at $\mathrm{P}(4,-3)$ and $\mathrm{Q}(-6,7)$ into three equal parts.
4 Let A $(-2,-1)$, B $(6,-1), \mathrm{C}(6,3)$ and $\mathrm{D}(-2,3)$ be vertices of a rectangle. Suppose P, Q, R and S are mid-points of the sides of the rectangle.
i What is the area of rectangle $A B C D$?
ii What is the area of quadrilateral $P Q R S$?
iii Give the ratio of the areas in i and ii.

Exercise 4.2

1 Find the coordinates of the mid-point of the line segments joining the points:
a $\quad \mathrm{A}(1,4)$ and $\mathrm{B}(2,2)$
b (a, b) and the origin
c $\quad \mathrm{M}(p, q)$ and $\mathrm{N}(q, p)$
d $\left(1 \frac{1}{2}, 1\right)$ and $\left(\frac{5}{2}, 1\right)$
e $\mathrm{E}(1+\sqrt{2}, \sqrt{2})$ and $\mathrm{F}(2 \sqrt{2}, \sqrt{8})$
f $\mathrm{G}(\sqrt{5}, 1 \quad \sqrt{3})$ and $\mathrm{H}(3 \sqrt{5}, 1+\sqrt{3})$

2 The mid-point of a line segment is $\mathrm{M}(3,2)$. One end-point of the segment is $\mathrm{P}(1,3)$. Find the coordinates of the other end-point.
3 Find the coordinates of the point R that divides the line segment joining the points $A(1,3)$ and $B(4,3)$ in the ratio $2: 3$.
4 A line segment has end-points $\mathrm{P}(1,5)$ and $\mathrm{Q}(5,2)$. Find the coordinates of the points that trisect the segment.
5 Find the mid-points of the sides of the triangle with vertices A (1,3$), \mathrm{B}(4,6)$ and $\mathrm{C}(3,1)$.

4.3 EQUATION OF A LINE

4.3.1 Gradient (slope) of a Line

From your everyday experience, you might be familiar with the idea of gradient (slope).
A hill may be steep or may rise very slowly. The number that describes the steepness of a hill is called the gradient (slope) of the hill.
We measure the gradient of a hill by the ratio of the vertical rise to the horizontal run.

ACTIVITY 4.4

Given points $\mathrm{P}(1,2), \mathrm{Q}(1,4), \mathrm{R}(0,1)$ and $\mathrm{S}(3,8)$
a find the value of $\frac{y_{2} \quad y_{1}}{x_{2}} x_{1}$ taking

$$
\text { i } \quad P \text { and } Q \quad \text { ii } \quad P \text { and } R \quad \text { iii } \quad Q \text { and } R \quad \text { iv } \quad R \text { and } S
$$

b are the values obtained in i iv above equal? What do you call these values?

In coordinate geometry, the gradient of a nonvertical straight line is the ratio of "change in y-coordinates" to the corresponding "change in x-coordinates". That is, the slope of a line through P and Q is the ratio of the vertical distance from P to Q to the horizontal distance from P to Q.
If we denote the gradient of a line by the letter m, then

$$
m=\frac{\text { change in } y \text {-coordinates }}{\text { change in } x \text {-coordinates }}=\frac{y_{2}}{x_{2}} x_{1}, x_{1} \quad x_{2}
$$

Figure 4.10

Definition 4.1

If (x_{1}, y_{1}) and (x_{2}, y_{2}) are points on a line with $x_{1} \quad x_{2}$, then the gradient of the line, denoted by m, is given by

$$
m=\frac{y_{2}}{} \quad y_{1}
$$

ACTIVITY 4.5

1 If A $\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$ are distinct points on a line with $x_{1}=x_{2}$, then what can be said about the gradient of the line?

Is the line vertical or horizontal?
2 What is the gradient of any horizontal line?
3 Consider the line with equation $f(x)=3 x-1$. Take three distinct points P_{1}, P_{2} and P_{3} on the line.
a Find the gradient using P_{1} and P_{2}. b \quad Find the gradient using P_{1} and P_{3}.
c What do you observe from a and b ?
4 Let P_{1}, P_{2}, P_{3} and P_{4} be points on a non-vertical straight line $y=a x+b$ with coordinates $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$ and $\left(x_{4}, y_{4}\right)$ respectively. Find:
a the gradient of the line taking P_{1} and P_{2}.
b the gradient of the line taking P_{3} and P_{4}.
c Are the ratios $\frac{y_{2}}{x_{2}} y_{1}$ and $\frac{y_{4}}{x_{1}} y_{3}$ (x) x_{3} equal?
d Could you conclude that the gradient of a line does not depend on the choice of points on the line?

Example 1 Find the gradient of the line passing through each of the following pairs of points:
a $\quad \mathrm{P}(7,2)$ and $\mathrm{Q}(4,3)$
b $\mathrm{A}(\sqrt{2}, 1)$ and $\mathrm{B}(\sqrt{2}, 3)$
c $\quad \mathrm{P}(2,3)$ and $\mathrm{Q}(5,3)$
d $\quad \mathrm{A}\left(\frac{1}{2}, \quad 2\right)$ and $\mathrm{B}\left(\frac{1}{2}, 2\right)$.

Solution:

a $m=\frac{y_{2}}{x_{2}} y_{1} x_{1}=\frac{32}{4(7)}=\frac{1}{11}$
b $m=\frac{y_{2} y_{1}}{x_{2} \quad x_{1}}=\frac{31}{\sqrt{2} \quad \sqrt{2}}=\frac{4}{2 \sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}$
c $\quad m=\frac{y_{2} \quad y_{1}}{x_{2} x_{1}}=\frac{3(3)}{52}=\frac{3+3}{3}=\frac{0}{3}=0$
So, $m=0$. Is the line horizontal? What is its equation?
d $\quad x_{1}=\frac{1}{2}$ and $x_{2}=\frac{1}{2}$
The line is vertical. So it has no measurable gradient.
The equation of the line is $x=x_{1}=x_{2}=\frac{1}{2}$ or simply $x=\frac{1}{2}$

Note: Gradient for a vertical line is not defined.

Example 2 Check that the lines ℓ_{1}, through $\mathrm{P}(0,1)$ and $\mathrm{Q}(-1,4)$ and ℓ_{2} through

$$
\mathrm{R}\left(\frac{2}{3}, 0\right) \text { and } \mathrm{T}(1,-1) \text { have same gradients. Are the lines parallel? }
$$

Here, $m_{1}=m_{2}$. Draw the lines and see that ℓ_{1} is parallel to ℓ_{2}.

Exercise 4.3

1 Find the gradients of the lines passing through the following points:
a $\quad \mathrm{A}(4,3)$ and $\mathrm{B}(8,11)$
b $\quad \mathrm{P}(3,7)$ and $\mathrm{Q}(1,9)$
c $\quad C(\sqrt{2}, 9)$ and $D(2 \sqrt{2}, 7)$
d $\quad \mathrm{R}(5,-2)$ and $\mathrm{S}(7,8)$
e $\mathrm{E}(5,8)$ and $\mathrm{F}(2,8)$
f $\quad \mathrm{H}(1,7)$ and $\mathrm{K}(1,6)$
g $\quad \mathrm{R}(1, b)$ and $\mathrm{S}(b, a), b$
1.

2 A (2, 3), B (7,5) and C (2, 9) are the vertices of triangle ABC. Find the gradient of each of the sides of the triangle.
3 Given three points $\mathrm{P}(1,5), \mathrm{Q}(1,2)$ and $\mathrm{R}(5,4)$, find the gradient of $\overline{P Q}$ and $\overline{Q R}$. What do you conclude from your result?
4 Use gradients to show that the points $P_{1}(4,6), P_{2}(1,12)$ and $P_{3}(7,0)$ are collinear, i.e., all lie on the same straight line.
 through the point $\mathrm{C}(6,9)$.

4.3.2 Slope of a Line in Terms of Angle of Inclination

The angle measured from the positive x-axis to a line, in anticlockwise direction, is called the inclination of the line or the angle of inclination of the line.
This angle is always less than 180°.

Group Work 4.2

Consider the right angled triangle $O A B$ in Figure 4.12.
1 How long is the hypotenuse $\overline{O B}$?
2 What is tangent of angle $B O A$?
3 What is measure of angle $B O A$?
4 What is the angle of inclination of line ℓ ?
5 What is the tangent of the angle of inclination?
6 By finding the coordinates of O and B, calculate the slope of line ℓ.

Figure 4.12

7 What relationship do you see between your answers for Questions 5 and 6 above?

The above Group Work will help you to understand the relationship between slope and angle of inclination.
For a non-vertical line, the tangent of this angle is the slope of the line. Observe the following.

a

b

Figure 4.13
In Figure 4.13a above, as $y_{2}-y_{1}$ represents the distance $R Q$ and $x_{2}-x_{1}$ represents the distance $P R$, the slope of the straight line $P Q$ is actually represented by the ratio

$$
\begin{aligned}
& m=\frac{R Q}{P R}=\frac{y_{2}}{x_{2}} y_{1} \\
& x_{1}
\end{aligned}=\tan (m R P Q)
$$

A line making an acute angle of inclination with the positive direction of the x-axis has positive slope.
Similarly, a line with obtuse angle of inclination , (see Figure 4.13b), has negative slope.
Slope of $\ell=\frac{R Q}{P R}=\frac{y_{2}-y_{1}}{x_{1}-x_{2}}=\frac{y_{2} \quad y_{1}}{x_{2} \quad x_{1}}=\tan \left(180^{\circ} \quad\right)=(\tan)=\tan$
(In Unit 5, this will be clarified)

ACTIVITY 4.6

1 How would you describe the line passing through the points with coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{1}, y_{2}\right)$? Is it perpendicular to the x-axis or the y-axis? What is the tangent of the angle between this line and the x-axis?

2 Suppose a line passes through the points with coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{1}\right)$. Find the tangent of the angle formed by the line and the x-axis. What is the slope of this line?
3 What is the angle of inclination of the line $y=x$, and the line $y=-x$?

In general, the slope of a line may be expressed in terms of the coordinates of two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ on the line as follows:

$$
m=\frac{y_{2}}{x_{2}} y_{1} x_{1}=\tan , x_{2} \quad x_{1}
$$

where is the anticlockwise angle between the positive x-axis and the line.
Example 3 Find the slope of a line, if its inclination is:
a 60°
b 135°

Solution:

a slope : $m=\tan =\tan 60^{\circ}=\sqrt{3}$
b slope : $m=\tan =\tan 135^{\circ}=\tan \left(180^{\circ}-45^{\circ}\right)=-\tan 45^{\circ}=-1$
Note: If θ is an obtuse angle, then, $\tan \theta=-\tan \left(180^{\circ}-\theta\right)$.
Example 4 Find the angle of inclination of the line
a containing the points $\mathrm{A}(3,-3)$ and $\mathrm{B}(-1,1)$
b containing the points $\mathrm{C}(0,5)$ and $\mathrm{D}(4,5)$.

Solution:

a $m=\frac{y_{2} y_{1}}{x_{2} x_{1}}=\frac{1(3)}{13}=1$. So $\tan =1$, and hence $=135^{\circ}$.
b $m=\frac{y_{2} \quad y_{1}}{x_{2} \quad x_{1}}=\frac{5 \quad 5}{4} 00=0$, tan $=0$. So, $=0^{\circ}$.
Note: Let m be the slope of a non-vertical line.
i If $m>0$, then the line rises from left to right as shown in Figure 4.14a.
ii If $m<0$, then the line falls from left to right as shown in Figure 4.14b.
iii If $m=0$, then the line is horizontal as in Figure 4.14c.

b
Figure 4.14

Exercise 4.4

1 Find the slope of the line whose angle of inclination is:
a 30°
b $\quad 75^{\circ}$
C 150°
d 90°
e $\quad 0^{\circ}$.

2 Find the angle of inclination of the line if its slope is:
a $-\sqrt{3}$
b $\frac{\sqrt{3}}{3}$
c
d $\frac{1}{\sqrt{3}}$
e 0 .

3 The points $\mathrm{A}(2,0), \mathrm{B}(0,2)$ and $\mathrm{C}(2,0)$ are vertices of a triangle. Find the measure of the three angles of triangle $A B C$. What type of triangle is $i t$?

4.3.3 Different Forms of Equations of a Line

From Euclidean Geometry, you may recall that there is a unique line passing through two distinct points. The equation of a line ℓ is an equation in x and y which is satisfied by the coordinates of every point on the line ℓ and is not satisfied by the coordinates of any point not on the line.

The equation of a straight line can be expressed in different forms. Some of these are: the point-slope form, the slope-intercept form and the two-point form.

ACTIVITY 4.7

1 Show that the graph of the equation $x=2$ contains points

$$
\mathrm{A}(2,0), \mathrm{B}(2,-1), \mathrm{C}(2,2) \text { and } \mathrm{D}\left(2, \frac{1}{3}\right) .
$$

2 Consider the graph of the straight line $y-x=1$. Determine which of the following points lie on the line.
$\mathrm{A}(3,1), \mathrm{B}(-1,0), \mathrm{C}\left(\frac{1}{2}, \frac{3}{2}\right), \mathrm{D}(0,1), \mathrm{E}\left(\frac{1}{2}, 1\right), \mathrm{F}(2,1)$ and $\mathrm{G}(1,2)$.
3 Which of the following points lie on the line $y=-5 x+4$?

$$
\mathrm{A}(-1,9), \mathrm{B}(-2,12), \mathrm{C}(0,4), \mathrm{D}\left(\frac{2}{5}, 2\right), \mathrm{E}(3,-10) .
$$

4 What do you call the number b if a line intersects the y-axis at point $\mathrm{P}(0, b)$?
5 Consider the graph of the straight line $y=m x+b$. Find its y-intercept and x-intercept.
6 Give the equations of the lines through the points:
a $\quad \mathrm{P}(-1,3)$ and $\mathrm{Q}(4,3)$
b $\quad \mathrm{R}(-1,1)$ and $\mathrm{S}(1,-1)$.

The point-slope form of equation of a line

We normally use this form of the equation of a line if the slope m of the line and the coordinates of a point on it are given.

Figure 4.15

Suppose you are asked to find the equation of the straight line with slope 3 and passing through the point with coordinate $(2,3)$.
Take P to be the point $(2,3)$ and let $\mathrm{Q}(x, y)$ be any other point on the line as shown in Figure 4.15. What is the slope of the straight line joining the points with coordinates $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$?
What is the slope of $\overleftrightarrow{P Q}$? You are given that the slope of this line is 3 . If you have answered correctly, you should obtain

$$
y=3 x-3
$$

which is the required equation of the straight line.
In general, suppose you want to find the equation of the straight line which passes through the point with coordinates $\left(x_{1}, y_{1}\right)$ and which has slope m. Again, let the point with given coordinates be $\mathrm{A}\left(x_{1}, y_{1}\right)$. Take any other point on the line, say B, with coordinates (x, y) as shown in Figure 4.16.

Figure 4.16

Then the slope of $\overleftrightarrow{A B}$ is $\frac{y}{y} \begin{aligned} & y_{1} \\ & x\end{aligned}$

$$
\Rightarrow y-y_{1}=m\left(x-x_{1}\right) \text { which is the same as } y=y_{1}+m\left(x-x_{1}\right) \text {. }
$$

This equation is called the point- slope form of the equation of a line.
Example 5 Find the equation of the straight line with slope $\frac{3}{2}$ and which passes through the point (3,2).
Solution: Assume that the point (x, y) is any point on the line other than $(-3,2)$. Thus, using the equation $y-y_{1}=m\left(x-x_{1}\right)$

$$
\begin{aligned}
& \Rightarrow y-2=\frac{3}{2}(x+3) \\
& \Rightarrow y=\frac{3}{2} x \quad \frac{5}{2} \text { or } 2 y+3 x+5=0
\end{aligned}
$$

The slope-intercept form of equation of a line

Consider the equation $y=m x+b$. When $x=0$, $y=b$. Also, when $x=1, y=m+b$ as shown in Figure 4.17.

You can see that $\mathrm{P}(0, b)$ is the point where the line with equation $y=m x+b$ crosses the y-axis. (b is called the y-intercept of the line). Let Q be $(1, m+b)$.
Using the coordinates of points P and Q, show that the slope of the straight line passing through P and Q is m.

Figure 4.17

Writing the equation of this line through the point $(0, b)$ with slope m, using the point-slope form, gives

$$
y-b=m(x-0) \Rightarrow y=m x+b
$$

where m is slope of the line and b is y-intercept of the line.
This equation is called the slope-intercept form of the equation of a line.
Note: The slope-intercept form of equation of a line enables us to find the slope and the y-intercept, once the equation is given.

Example 6 Find the equation of the line with slope $\frac{2}{3}$ and y-intercept 3 .
Solution: Here, $m=\frac{2}{3}$ and the y-intercept is 3 .
Therefore, the equation of the line is $y=\frac{2}{3} x+3$.

The two-point form of equation of a line

Finally, let us look at the situation where the slope of a non-vertical line is not given but two points on the line are given.
Consider a straight line which passes through the points $\mathrm{P}\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$. If $\mathrm{R}(x, y)$ is any point on the line other than $\mathrm{P}\left(x_{1}, y_{1}\right)$ or $\mathrm{Q}\left(x_{2}, y_{2}\right)$, then the slope of $\overrightarrow{P R}$ is

$$
m=\frac{y}{x} y_{1}, x \quad x_{1}
$$

and the slope of $\overleftrightarrow{P Q}$ is

$$
m=\frac{y_{2}}{x_{2}} x_{1}, x_{1} \quad x_{2}
$$

But the slope of $\overleftrightarrow{P R}=$ the slope of $\overleftrightarrow{P Q}$

$$
\begin{array}{ll}
\frac{y}{l} & y_{1} \\
\hline x & x_{1}
\end{array}=\frac{y_{2}}{x_{2}} y_{1}
$$

This equation is called the two- point form of the equation of a line.
Example 7 Find the equation of the line passing through the points $\mathrm{P}(-1,5)$ and Q $(3,13)$.
Solution: \quad Taking $(-1,5)$ as $\left(x_{1}, y_{1}\right)$ and $(3,13)$ as $\left(x_{2}, y_{2}\right)$, use the two-point form to get the equation of the line to be

$$
y-5=\frac{135}{3+1}(x+1)=2 x+2 \text { which implies } y=2 x+7
$$

The general equation of a line

A first degree (linear) equation in x and y is an equation of the form;

$$
A x+B y+C=0
$$

where A, B and C are fixed real numbers such that $A \quad 0$ or $B \quad 0$
All the different forms of equations of lines discussed above can be expressed in the form

$$
A x+B y+C=0
$$

Conversely, one can show that any linear equation in x and y is the equation of a line. Suppose a linear equation in x and y is given as

$$
A x+B y+C=0 .
$$

If $B \quad 0$, then the equation may be solved for y as follows:

$$
\begin{gathered}
A x+B y+C=0 \\
B y=-A x-C \\
y=\frac{A}{B} x \frac{C}{B}
\end{gathered}
$$

This equation is of the form $y=m x+b$, and therefore represents a straight line with slope $m=\frac{A}{B}$ and y-intercept $b=\frac{C}{B}$.

What will be the equation $A x+B y+C=0$, if $B=0$ and A ?
Example 8 Find the slope and y-intercept of the line whose general equation is $3 x-6 y-4=0$.
Solution: Solving for y the equation $3 x-6 y-4=0$ gives,

$$
-6 y=-3 x+4 \Rightarrow y=\frac{3 x}{6}+\frac{4}{6}=\frac{1}{2} x \quad \frac{2}{3}
$$

So, the slope is $m=\frac{1}{2}$ and the y-intercept is $b=\frac{2}{3}$
Example 9 What is the equation of the line passing through $(-2,0)$ and $(0,5)$.
Solution: Using two-point form:

$$
y \quad 0=\frac{5 / 0}{0((2)}(x+2)
$$

which gives us, $5 x \quad 2 y+10=0$ as the equation of the line.

Exercise 4.5

1 Find the equation of the line passing through the given points.
a $\mathrm{A}(2$,
$4)$ and $B(1,5)$
b
$\mathrm{C}(2,4)$ and $\mathrm{D}(1,5)$
c $\quad \mathrm{E}(3,7)$ and $\mathrm{F}(8,7)$
d $\quad \mathrm{G}(1,1)$ and $\mathrm{H}(1+\sqrt{2}, 1-\sqrt{2})$
e $\quad P(1,0)$ and the origin $\quad f \quad Q(4,1)$ and $R(4,4)$
g $\quad \mathrm{M}($,$) and \mathrm{N}(3,5) \quad \mathrm{h} \quad \mathrm{T}\left(1 \frac{1}{2}, \frac{5}{2}\right)$ and $\mathrm{S}\left(\frac{3}{2}, 1\right)$.

2 Find the equation of the line with slope m, passing through the given point P.
a $\quad m=\frac{3}{2} ; \mathrm{P}(0$,
6)
b $\quad m=0 ; \mathrm{P}\left(-, \frac{}{4}\right)$
c $\quad m=1 \frac{2}{3} ; \mathrm{P}(1,1)$
d $\quad m=\quad ; \mathrm{P}(0,0)$
e $\quad m=\sqrt{2} ; \mathrm{P}(\sqrt{2}, \quad \sqrt{2}) \quad \mathrm{f} \quad m=1 ; \mathrm{P}\left(\frac{1}{3}, \frac{3}{2}\right)$.

3 Find the equation of the line with slope m and y-intercept b.
a $\quad m=0.1 ; b=0$
b $\quad m=\sqrt{2} ; b=1$
c $\quad m=\quad ; b=2$
d $\quad m=1 \frac{1}{3} ; b=\frac{5}{3}$
e $m=\frac{1}{4} ; b=5$
f $m=\frac{2}{3} ; b=1.5$

4 Suppose a line has x-intercept a and y-intercept b, for $a, b \quad 0$; show that the equation of the line is $\frac{x}{a}+\frac{y}{b}=1$.

5 For each of the following equations, find the slope and y-intercept:
a $\quad \frac{3}{5} x \quad \frac{4}{5} y+8=0$
b $\quad y+2=0$
c $2 x-3 y+5=0$
d $\quad x+\frac{1}{2} y \quad 2=0$
e $\quad y+2=2\left(\begin{array}{ll}x & 3 y+1\end{array}\right)$.

6 A line passes through the points A $(5,-1)$ and $B(-3,3)$. Find:
a the point-slope form of the equation of the line.
b the slope-intercept form of the equation of the line.
c the two-point form of the equation of the line. What is its general form?
7 Find the slope and y-intercept, if the equation of the line is:
a $\frac{1}{3} x \quad \frac{2}{3} y+1=y+x$
b $\quad 3\left(\begin{array}{ll}y & 2 x\end{array}\right)=y+\frac{1}{2}\left(\begin{array}{ll}1 & 2 x\end{array}\right)$.

8 A triangle has vertices at $\mathrm{A}(-1,1), \mathrm{B}(1,3)$ and $\mathrm{C}(3,1)$.
a Find the equations of the lines containing the sides of the triangle.
b Is the triangle a right-angled triangle?
c What are the intercepts of the line passing through B and C ?

4.4 PARALLEL AND PERPENDICULAR LINES

Slopes can be used to see whether two non-vertical lines in a plane are parallel, perpendicular, or neither.
For instance, the lines $y=x$ and $y=x+3$ are parallel and the lines $y=x$ and $y=-x$ are perpendicular. How are the slopes related?

ACTIVITY 4.8

1 What is meant by two lines being parallel? Perpendicular?
2 In Figure 4.19, ℓ_{1} and ℓ_{2} are parallel.

a Calculate the slope of each line. b Find the equation of each line.
c Discuss how their slopes are related.

Figure 4.19

Figure 4.20

3 In Figure 4.20 above, ℓ_{1} and ℓ_{2} are perpendicular.
a Calculate the slope of each line. b Find the equation of each line.
c Discuss how their slopes are related.

Theorem 4.1

If two non-vertical lines ℓ_{1} and ℓ_{2} are parallel to each other, then they have the same slope.

Suppose you have two non-vertical lines ℓ_{1} and ℓ_{2} with slopes m_{1} and m_{2}, and inclination and , respectively as shown in Figure 4.21.

If ℓ_{1} is parallel to ℓ_{2}, then $=$ (why?)
Consequently, $m_{1}=\tan =\tan =m_{2}$
State and prove the converse of the above theorem.
What can be stated for two vertical lines? Are they parallel?

Figure 4.21
Example 1 Show that the line passing through $\mathrm{A}(1,1)$ and $\mathrm{B}(2,3)$ is parallel to the line passing through $\mathrm{P}(3,2)$ and $\mathrm{Q}(3,6)$.
Solution: Slope of $\overparen{A B}=\frac{y_{2} \quad y_{1}}{x_{2} \quad x_{1}}=\frac{3(1)}{2(1)}=\frac{3+1}{2+1}=\frac{2}{3}$
Slope $\overleftrightarrow{P Q}=\frac{y_{2}}{x_{2}} x_{1}=\frac{6(2)}{3(3)}=\frac{6+2}{3+3}=\frac{2}{3}$
Since $\overleftrightarrow{A B}$ and $\overleftrightarrow{P Q}$ have the same slope, $\overleftrightarrow{A B}$ is parallel to $\overleftrightarrow{P Q}$ i.e. $\overleftrightarrow{A B} / / \overleftrightarrow{P Q}$
Recall that two lines are perpendicular, if they form a right-angle at their point of intersection.

Theorem 4.2

Two non-vertical lines having slopes m_{1} and m_{2} are perpendicular, if and only if $m_{1} m_{2}=1$.

Proof: Suppose ℓ_{1} is perpendicular to ℓ_{2}.
Note: If one of the lines is a vertical line, then the other line must be a horizontal line which has slope zero. So, assume that neither line is vertical.

Let m_{1} and m_{2} be the slopes of ℓ_{1} and ℓ_{2}, respectively.
Let $\mathrm{R}\left(x_{0}, y_{0}\right)$ be the point of intersection and choose $\mathrm{P}\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$ on ℓ_{1} and ℓ_{2}, respectively.

Draw triangles $Q S R$ and $R T P$ as shown in Figure 4.22. $Q S R$ and RTP are similar, (why?)

$$
\begin{aligned}
& \frac{P T}{R T}=\frac{R S}{Q S} \quad \text { (why?) } \\
& \frac{y_{1}}{x_{1}} y_{\mathrm{o}} \\
& x_{\mathrm{o}}=\frac{x_{\mathrm{o}} \quad x_{2}}{y_{2} \quad y_{\mathrm{o}}}=\left(\begin{array}{ll}
x_{2} & x_{\mathrm{o}} \\
y_{2} & y_{\mathrm{o}}
\end{array}\right) \\
& \frac{y_{1} y_{o}}{x_{1}} x_{o}=\frac{1}{\frac{y_{2} y_{o}}{x_{2}} x_{o}} \\
& m_{1}=\frac{1}{m_{2}} \text { or } m_{1} \cdot m_{2}=1
\end{aligned}
$$

As an exercise, start with $\frac{Q S}{R S}=\frac{R T}{P T}$ and conclude that $m_{2}=\frac{1}{m_{1}}$
Conversely, you could show that if two lines have slopes m_{1} and m_{2} with $m_{1} m_{2}=-1$, then the lines are perpendicular. This can be done by reversing the above steps and concluding that the two triangles are similar. Complete the proof.
Example 2 Suppose ℓ_{1} passes through $\mathrm{P}(-1,-3)$ and $\mathrm{Q}(2,6)$. Find the slope m_{2} of any line ℓ_{2} that is:
a parallel to $\ell_{1} \quad \mathbf{b}$ perpendicular to ℓ_{1}.
Solution: The slope of ℓ_{1} is

$$
m_{1}=\frac{y_{2}}{x_{2}} \frac{y_{1}}{x_{1}}=\frac{6(3)}{2(1)}=\frac{9}{3}=3 . S \mathrm{So},
$$

a the slope of line ℓ_{2} parallel to ℓ_{1} is $m_{1}=3$
b the slope of line ℓ_{2} perpendicular to ℓ_{1} is $m_{2}=-\frac{1}{m_{1}}=\frac{1}{3}$
Example 3 Find the equation of the line passing through $\mathrm{P}(5,-1)$ and perpendicular to the line $\ell: x-3 y=-7$.

Solution: From $x-3 y=-7, y=\frac{1}{3} x+\frac{7}{3}$ So, $m_{1}=\frac{1}{3}$
Let the slope of the required line be m_{2}. Then, $m_{1} \cdot m_{2}=-1$ gives $m_{2}=\frac{1}{m_{1}}=3$
Therefore, the required equation of the line is $y+1=-3(x-5)$ i.e. $y=-3 x+14$.

Exercise 4.6

1 In each of the following, determine whether the line through A and B is parallel to or perpendicular to the line through P and Q :
a $\quad \mathrm{A}(1,3)$ and $\mathrm{B}(2,2)$
b $\quad \mathrm{A}(3,5)$ and $\mathrm{B}(2,5)$
$P(1,4)$ and $Q(2,9)$
$\mathrm{P}(1,4)$ and $\mathrm{Q}(1,5)$.

2 Find the slope of the line that is perpendicular to the line joining $\mathrm{P}(2,3)$ and $\mathrm{Q}(-3,-2)$.
3 Use slope to show that the quadrilateral $A B C D$ with vertices $\mathrm{A}(5,2)$, $\mathrm{B}(3,1), \mathrm{C}(3,0)$ and $\mathrm{D}(1,3)$ is a parallelogram.
4 Let ℓ be the line with equation $2 x-3 y=6$. Find the slope-intercept form of the equation of the line that passes through the point $\mathrm{P}(2,1)$ and is:
a parallel to ℓ
b perpendicular to ℓ.

5 Find the equation of a line passing through the point P and parallel to the line ℓ for:
a $\quad \ell: 2 x-5 y-4=0 ; \mathrm{P}(-1,2)$
b $\quad \ell: 3 x+6=0 ; P(4,-6)$.

6 Determine which of the following pairs of lines whose equations are given are perpendicular or parallel or neither:
a $\quad 3 x-y+5=0$ and $x+3 y-1=0$
b $\quad 3 x-4 y+1=0$ and $4 x-3 y+1=0$
c $\quad 4 x-10 y+8=0$ and $10 x+6 y-3=0$
d $\quad 2 x+2 y=4$ and $x+y=10$.
7 Find the equation of the line passing through the point $\mathrm{P}(2,5)$ and:
a parallel to the line passing through the points $\mathrm{A}(3,1)$ and $\mathrm{B}(1,3)$
b parallel to the line $\ell: x+y=2$
c perpendicular to the line joining the points $\mathrm{A}(1,2)$ and $\mathrm{B}(4,2)$
d perpendicular to the line $\ell: y=x+1$.
8 Determine k so that the line with equation $4 x+k y=12$ will be:
a parallel to the line with equation $x=3 y$
b perpendicular to the line with equation $x-3 y=5$.
9 Show that the plane figure with vertices:
a $\mathrm{A}(6,1), \mathrm{B}(5,6), \mathrm{C}(4,3)$ and $\mathrm{D}(3,2)$ is a parallelogram
b $\quad \mathrm{A}(2,4), \mathrm{B}(1,5), \mathrm{C}(2,2)$ and $\mathrm{D}(1,1)$ is a rectangle.
10 The vertices of a triangle are $\mathrm{A}(2,5), \mathrm{B}(3,8)$ and $\mathrm{C}(6,4)$. Show that the line joining the mid-points of sides $\overline{A B}$ to $\overline{B C}$ is parallel to and one-half the length of side $\overline{A C}$.

Key Terms

analytic geometry angle of inclination coordinate geometry coordinates equation of a line
general equation of a line horizontal line inclination of a line mid- point non- vertical line
point- slope form slope (gradient)
slope- intercept form steepness
two- point form

Summary

1 If a point P has coordinates (a, b), then the number a is called the x-coordinate or abscissa of P and b is called the y-coordinate or ordinate of P.
2 The distance d between points $\mathrm{P}\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$ is given by the formula

$$
d=\sqrt{\left(\begin{array}{ll}
x_{2} & x_{1}
\end{array}\right)^{2}+\left(\begin{array}{ll}
y_{2} & y_{1}
\end{array}\right)^{2}}
$$

3 The point $\mathrm{R}\left(x_{0}, y_{\mathrm{o}}\right)$ dividing the line segment $P Q$, internally, in the ratio $m: n$ is given by

$$
\mathrm{R}\left(x_{0}, y_{\mathrm{o}}\right)=\left(\frac{n x_{1}+m x_{2}}{n+m}, \frac{n y_{1}+m y_{2}}{n+m}\right) \text {, }
$$

where $\mathrm{P}\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$ are the end-points.
4 The mid- point of a line segment whose end-points are $\mathrm{P}\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$ is given by

$$
\mathrm{M}\left(x_{0}, y_{\mathrm{o}}\right)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

5 If $\mathrm{P}\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$ are points on a line with $x_{1} \quad x_{2}$, then the slope (gradient) of the line is given by

$$
m=\frac{y_{2}}{} y_{1}
$$

6 If is the angle between the positive x-axis and the line passing through the points $\mathrm{P}\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right), x_{1} \quad x_{2}$, then the slope of the line is given by

$$
m=\frac{y_{2}}{y_{1}} \begin{aligned}
& y_{1} \\
& x_{2}
\end{aligned} x_{1}=\tan
$$

7 The graph of the equation $x=c$ is the vertical line through $\mathrm{P}(c, 0)$ and has no slope.
8 The equation of the line with slope m and passing through the point $\mathrm{P}\left(x_{1}, y_{1}\right)$ is given by

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

9 The equation of the line with slope m and y-intercept b is given by

$$
y=m x+b
$$

10 The equation of the line passing through points $\mathrm{P}\left(x_{1}, y_{1}\right)$ and $\mathrm{Q}\left(x_{2}, y_{2}\right)$ is given by

$$
y-y_{1}=\frac{y_{2} \quad y_{1}}{x_{2} \quad x_{1}}\left(x-x_{1}\right), x_{1} \quad x_{2}
$$

11 The graph of every first degree (linear) equation $A x+B y+C=0, A, B \neq 0$ is a straight line and every straight line is a graph of a first degree equation.
12 Two non-vertical lines are parallel, if and only if they have the same slope.
13 Let ℓ_{1} be a line with slope m_{1} and ℓ_{2} be a line with slope m_{2}. Then ℓ_{1} and ℓ_{2} are perpendicular lines if and only if $m_{1} m_{2}=1$.

Review Exercises on Unit 4

1 Show that the points $\mathrm{A}(1,1), \mathrm{B}(1,1)$ and $\mathrm{C}(\sqrt{3}, \sqrt{3})$ are the vertices of an equilateral triangle.
2 Find the coordinates of the three points that divide the line segment joining $P(4,7)$ and $Q(10, \quad 9)$ into four parts of equal length.
3 Find the equation of the line which passes through the points $P(4,2)$ and $Q(3,6)$.
4 Find the equation of the line:
a with slope -3 that passes through $\mathrm{P}(8,3)$.
b with slope $\frac{1}{2}$ that passes through $\mathrm{Q}(2,5)$.
5 In each of the following, show that the three points are vertices of a right angled triangle:
a $\quad \mathrm{A}(0,0), \mathrm{B}(1,1), \mathrm{C}(2,0) \quad \mathrm{b} \quad \mathrm{P}(3,1), \mathrm{Q}(3,4), \mathrm{R}(3,1)$.

6 Find the slope and y-intercept of the line with the following equations:
a $\quad 2 x-3 y=4$
b $\quad 2 y-5 x-2=0$
c $\quad 5 y+6 x-4=0$
d $\quad 3 y=7 x+1$.

7 Find the equation of the straight line passing through $\mathrm{P}(-2,1)$ and:
a parallel to the line with equation $2 x-3 y=1$
b perpendicular to the line with equation $5 y+6 x=10$.
8 Let ℓ be the line through $\mathrm{A}(4,5)$ and $\mathrm{B}(3, t)$ that is perpendicular to the line through $\mathrm{P}(1,3)$ and $\mathrm{Q}(4,2)$. Find the value of t.
9 Let ℓ be the line through $\mathrm{A}(4,3)$ and $\mathrm{B}(t, 2)$ that is parallel to the line through $\mathrm{P}(2,4)$ and $\mathrm{Q}(4,1)$. Find the value of t.
10 Prove that the condition for lines $A x+B y+C=0$ and $a x+b y+c=0$ to be perpendicular may be written in the form

$$
A a+B b=0, \text { where } B, b \neq 0
$$

