Physics Syllabus, Grade 10

Grade 10 physics objectives

After completing grade 10 physics lessons the students will be able to:

- Understand the motion of objects in horizontal, vertical, and inclined planes, and with reference to the forces acting on the objects; the laws of conservation of energy and of momentum for objects moving in one and two dimensions
- Develop basic manipulative skills in investigate motion in a plane, and solve problems involving the forces acting on an object in linear, projectile, and circular motion, with the aid of vectors, graphs, and free-body diagram,
- Understand the concepts of, electrical, gravitational, and magnetic fields; electromagnetic radiation; electromagnetic induction, and the interface between energy and matter, the common applications of electrical and electronic circuits, and the function and configuration of the components used in circuits
- Develop skills in using measuring instruments and familiar electrical devices ;constructing simple electrical circuits using common tools appropriately and safely
- Appreciate the applications of electrical and electronic technologies to the community

Unit 1: Motion in two dimensions (22 periods)

- describe the motion of objects in horizontal, vertical, and inclined planes, and predict and explain the motion with reference to the forces acting on the objects;
- investigate motion in a plane, through experiments and solve problems involving the forces acting on an object in linear, projectile, and circular motion, with the aid of vectors, graphs, and free-body diagrams;
- analyze ways in which an understanding of the dynamics of motion relates to the development and use of technological devices, including terrestrial and space vehicles, and the enhancement of recreational activities and sports equipment.

Competencies	Contents	Suggested activities
Students will be able to:	1. motion in two dimension	
 Students will be able to: Define the term projectile Give examples of projectiles Distinguish between one dimensional and two dimensional motions Identify that a projectile motion is a two dimensional motion Define the term angle of projection(angle of elevation and depression) Describe the effect of gravity in the motion of a projectile Identify that the horizontal motion part is motion with a constant velocity and the vertical motion write an expression for 	 <i>I. motion in two dimension</i> 1.1 Projectile motion (5 periods) Horizontal projection Vertical projection Inclined projection 	 Demonstration: The "aluminium foil cannon ball". It uses a rubber band to shoot an aluminium cannon ball out of a paper tube. Inclined plane – hitting a target. It shows independence of vertical and horizontal motions. Equipment: the same long "v" track from Newton's First Law demonstration. It should be at least a meter and a half long. Put a ball in motion down the track. Have a stop at the end. Use a short segment of track at a high angle; say 45 degrees, to impart momentum. Measure the speed of the ball on the track. Measure the height of the end of the track off the floor. Calculate the time it takes to fall. Predict where the ball will land if the stop is removed. Put a cup there to catch the ball. Repeat the demonstration perhaps with the track running over student desks. Invite students to measure and place the cup. Change the velocity of the ball. Re-measure with a different launch angle. Invite a group of students to measure the velocity and make a prediction about where to put the cup. PEER INSTRUCTION on motion in 2 dimensions Group lab – ACTIVE ASSESSMENT: Each row will have paper tube cannon. They will calibrate the cannon's initial velocity by measuring the force constant of the rubber band. Using the definition of work, and E, they calculate the work done on the ball by the
the time required to reach the maximum		elastic. This predicts the initial velocity and also the vertical height the ball should reach.

Physics: Grade 10

Competencies	Contents	Suggested activities
 height of a projectile projected at an angle θ to the horizontal use an expression to calculate the maximum height attained by a projectile in an inclined projection Write an expression for the total time of flight of a projectile projected at a given angle Derive an expression for the range R of a projectile projected at a given angle Deduce the path (trajectory) of a projectile is parabolic Show that the range occurs at an angle of 45 degrees Solve problems 		The launcher is placed in either the front desk or back desk. The instructor gives groups of 6-9 students a small basket 10-20 cm in diameter. The lab challenges student groups to calculate the angle of the launcher so that a launch will hit the basket placed in the middle of their desks. Each group gets three tries. Each group must submit a report showing their calculations and measurements that achieved the result. Individuals must write up the process and explain how to calculate range of a projectile. Activity: Independence of gravity and other forces Position a ruler or other stick on the edge of a table. place a penny on one end of the ruler and place another penny on the edge of a table near the ruler, Quickly pivot the ruler about its other end and one penny will drop straight down while the other will be hit by the ruler and move in a horizontal and vertical direction simultaneously. Listen for the clicks as each penny hits the floor. Do they hit the floor at the same or at different times? Repeat the activity using different sizes of coins and different heights. Does the motion in the vertical direction influence the motion in the horizontal direction? Discuss.
 Define the term centre of mass Determine the centre of mass of regular and irregular bodies 	 Centre of Mass Definition of centre of mass Centre of mass theorem Application problems for CM. 	 Demonstration: A 2m plank with four low friction wheels such as from roller bearings models a boat in water. The middle of the plank is marked on the plank and on the floor. A student, starting in the middle, walks four steps. The plank moves backwards. Marks are made of finial positions. The instructor guides a calculation of the motion of the centre of mass. Demonstration: two students on platforms with wheels exchange a very heavy ball (sand filled basket ball). They analyze the event in Newtonian fashion. Now one platform has 2 or 3 students. Repeat the demonstration. Record backward motion of each sled. Demonstration of centre of mass (CM) using a tennis racket. Some lights form a band around part of the tennis racket. Use one band at a time. The

Competencies	Contents	Suggested activities
	 Boat on a river with occupant walking. Satellite separating from an explosion or a rocket. 	instructor throws it toward the back of the class. Lights on the ends make loops in the air. Lights placed at one spot make a perfect parabola. The instructor investigates what properties this point has. He suspends the racket by a string at that point. It balances. This demonstration gives support to the CM theorem. The instructor tries again with a stick weighted heavily at one end. The CM is closer to the heavy end
		Activity: centre of mass of an irregular object How can we find the centre of mass of an irregularly shaped object? Use a nail or pencil to punch three holes in the perimeter of a cardboard. Slightly enlarge these holes so the cardboard can rotate freely. Place a nail or pencil in one hole and hang a weighted piece of string from it. Swing the cardboard and when it comes to rest, draw a line on the cardboard showing the position of the string .the cardboard swing back and forth as a pendulum until the centre of mass comes to rest directly below the point of support. This position represents the state of least energy for the body, and all bodies move toward a position of minimal energy. Repeat the other two holes. Attempt to balance the cardboard at the intersection of the three lines
 Explain the force needed to keep an object moving in a horizontal circle (centripetal force) Identify that a radial acceleration of a body in 	• uniform circular motion	Demonstration: The instructor swings a pail of water horizontally at sufficient speed not to spill the water. Draw out students' ideas about circular motion. What keeps the water from spilling? Use diagrams to pull apart ideas about forces on the water.
a uniform circular motion arises from a change in the direction of a velocity		Why does the instructor lean back a bit? (bring in centre of mass arguments)Bring in Newton's laws. Why the water in the pail accelerated but its speed is not changing?
 Calculate the magnitude of the centripetal force that is needed to keep an object moving in a horizontal circle 		Repeat the experiment with a vertical motion of the pail. Begin with a pendulum like motion then move to full rotation. Do force diagrams at the top, bottom and side points. Demo: Cut a piece of glass tubing about 15 cm in length. Heat one end in a Bunsen burner flame until the walls of the tube are smoothly rounded. Hang one end of a one-metre section of fishing line to two-holed rubber stopper and thread the other end through the tube. Tie
 Describe the rotational motion of a body. Describe angular displacement and tangential displacement. 	 1.2 Kinematics (5 periods) Rotational variables Angular and tangential displacement 	approximately 50 grams of metal washer from the line. These washers provide the centripetal force that is exerted through the line to keep the stopper rotating in a circle. Using a stopwatch or other timing device, swing the stopper at a constant rate. Be certain to adjust the line so the distance from the top of the tube to the stopper is equal to the chosen radius, and attach a paperclip to the line above the weights to use as an indicator to check the circular motion is

	Competencies	Contents	Suggested activities
•	Express the measure of an angle in terms of revolutions, degrees, and radian	 Angular and tangential velocity Angular and tangential acceleration 	steady. If the clip remains stationary, the radius and speed of rotation is constant. The velocity can be computed by dividing the circumference of the circle by the period of rotation. It is easier to determine the period of rotation by measuring the time required for ten rotations and dividing by ten. Calculate the centripetal acceleration acting on the stopper. Repeat using a
•	Define angular velocity and tangential velocity.	 Uniform circular motion Botational motion with 	larger radius
•	Identify that the SI unit of angular velocity is	constant angular acceleration	
•	rad/sec. Define angular and	• Equations of motion with constant angular	
•	tangential acceleration. Identify that the SI unit of angular acceleration is	acceleration	Demonstration:
•	rad /s ² Show the relationship between angular displacement and tangential displacement.	 1.3. Rotational dynamics (7 periods) 1.3.1. Moment of inertia and rotational kinetic 	The tool is a bicycle wheel that is filled with sand, or better, some sand mixed with metal shot. The axels have handles to hold the wheel as it rotates. The instructor gets the wheel going as fast as possible. He invites students to come up and hold the handles and attempt to twist the wheel in a vertical direction. They describe a resistance. He stops the wheel and invites
•	Show the relationship between angular velocity	energy	others to twist in a vertical direction. Why is there no resistance when the wheel is stopped?
•	and tangential velocity. Show the relationship between angular	1.3.2. TorqueTorque and angular acceleration	The instructor wraps more masses onto the wheel (bicycle tire segments filled with sand, sealed at the ends.) These are taped symmetrically on the wheel. He makes the wheel spin again and invites students to try to twist it. Is it harder or easier than before?
•	acceleration and tangential acceleration. Use the relation a =(a2	Angular momentumLaw of conservation of angular momentum	Alternately, the understanding with a demonstration of angular momentum using a weighted bicycle wheel. Have the wheel accelerated by spinning it.
	t +a2r)1/2 to calculate the magnitude of the total acceleration of a		Connect angular momentum with linear momentum by accelerating the mounted wheel by having a weight drop and exert a torque.
•	body in circular motion. Solve problems related to angular displacement, angular velocity, and angular acceleration	 Conditions of equilibrium in rotational motion Centre of gravity 	Demonstration: angular momentum, torque and stability Hold a coin horizontally, using thumb and first finger of one hand. Slowly move your fingers apart until the object falls. Unless you are agile enough to release both fingers from the coin at precisely the same instant the coin will flip as it falls because the last finger touching the coin
•	Describe rotational motion with constant angular acceleration. State the equations of	- Centre of gravity	acts as pivot and gravity acting at the coin's centre of mass provides an external torque to rotate the coin about this axis .As the coin falls it rotates around its centre of mass The demonstration motivates a qualitative understanding of the moment of inertia, a quantity a lot like mass but now only applicable with rotation.

Physics: Grade 10

Physics: Grade 10

	Competencies	Contents	Suggested activities
	motion with constant		
	angular acceleration.		Demonstration: To demonstrate distribution of mass and rotational inertia.
•	Show the analogous		Tape cans of soup or other similar objects an equal and short distance from the centre of a
	relation between		meter stick, leaving room for your hand to grasp the stick at its center. Apply torque to the
	equations of uniformly		stick by twisting it back and forth and note the effort required. Move the objects to the ends of
	accelerated rectilinear		the metre stick and tape them.
	motion and rotational		Is it easier or more difficult to rotate the stick?
	motion		
•	Use equations of motion		Activity: to demonstrate rotational inertia
	with constant angular		Place two different sized rolls of adding machine tape or other rolled paper on the dowel.
	acceleration to solve		Attach heavy clips to the rolls and hold so they cannot unwind .release the rolls at the same
	simple related problems		time and note which unrolls most rapidly.
•	Define the moment of		Which roll has the greatest rotational inertia?
	inertia of a point mass		
•	Define rotational kinetic		Define angular momentum using the right hand rule. Show its representation as an arrow from
	energy of a body.		the centre of the axis. "reality of the unseen". Angular momentum is real but it is not, itself,
•	Solve simple problems		visible. Trying to change the direction of rotation meant applying forces to the angular
	related to moment of		momentum vector.
	inertia and rotational		
	kinetic energy		Inquire students how angular momentum helps riding a bicycle.
•	Define the term torque		
•	Identify the SI unit of		Restate Newton's 1 ⁻¹ law for rotation.
	torque is Nm, which is		Restate Newton's 2 Taw for rotation.
	not the same as Joule		Define tennes. In mine other them is a distance in the definition?
•	Express torque in terms		Define torque. Inquire why there is a distance in the definition?
	of moment of inertia and		Define kinetic retational energy. Show the correspondence of terms
	angular acceleration		$VE = 16 \text{ mm}^2 - 1/2 \text{ L} (a)^2 - VE$
•	Derive an expression for		$\mathbf{KE}_{\text{linear}} = \frac{72}{10} \prod \mathbf{V} = \frac{1}{2} \mathbf{I} \mathbf{W} = \mathbf{KE}_{\text{rot}}$
1	the work done by the		Demonstration:
1	torque		Use a mounted weighted hievele wheel and a small light wooden nulley to supply torque to
•	Use the formula $W=\tau\theta$ to		show conversion of Potential Energy into rotational Kinetic Energy A weight suspended on
	solve problems related to		a string attached to a nulley disk forces the weighted wheel to accelerate
	work done by torque		Activity: Obtain three cans of similar size, one filled with a liquid, one filled with a solid or
•	Define the angular		semi-solid and an empty can with the ends cut out. Which can will reach the bottom first
	momentum of a particle		when released on a ramp at the same time? I ast? Test your predictions
	of mass m		when released on a ramp at the sume time. East, rest your predictions.
•	Write the SI unit of		PEER Instruction:
1	angular momentum		

	Competencies	Contents	Suggested activities	
•	State the law of		What happens if the mass of the wheel is increased? Why?	
	conservation of angular		What happens if the mass is doubled?	
•	momentum		what happens if the mass is doubled?	
•	Solve problems using the		Increase the mass of the wheel by adding sand filled segments taped on	
	angular momentum		nereuse the mass of the wheel of utdang suite mied segments taped on.	
•	State the first and second		Demonstration:	
	conditions of		Converting rotational kinetic energy into electrical energy:	
	equilibrium.			
•	Solve problems related to		Get the weighted wheels going to a good speed? Use a small DC electric motor with a 5-10	
	conditions of		cm disk attached to the shaft. Have a small mirror segment attached to the disk and a light	
	equilibrium.		shining on the mirror to make rotations visible. Demonstrate attaching a battery to the motor.	
•	Define the term centre of		maximum speed. Touch the motor's wheel to the tire. The light hulb will light for a while as	
	mass (centre of gravity)		the wheel slows down When it runs in reverse way a motor is also a generators	
•	of a solid body.		ale wheel slows down. When it fails in feverse way, a motor is also a generators.	
•	gravity of a body using a			
	plumb –line method			
•	Define the terms: stable.			
	unstable and neutral			
	equilibrium.			
٠	State the Newton's law	1.4 Newton's law of	PEER Instruction:	
	of universal gravitation	universal gravitation	What kinds of energy transformations are involved?	
٠	Determine the magnitude	(5 periods)	If the light bulb were not screwed in, what would the interaction with the motor and tire?	
	of the force of attraction	• Variation of g with	Do the experiment.	
	between two masses	altitude	Collect literature satellites from news papers, libraries and catalogues, inquire students to write	
•	Separated by a distance r	• Kepler's law of planetary	an essay about the history of satellites, dates for the launching of the satellites into space and	
	at any distance above the	 Motion of artificial 	time spent into space.	
	surface of the earth	satellites(orbital and	· · ·	
•	State Kepler's law of	escape velocities)		
	planetary motion	Geostationary satellites		
•	Use kepler's law of			
	planetary motion to			
	determine the period of			
	any planet			
٠	Differentiate between			

Physics: Grade 10

Physics: Grade 10

Competencies	Contents	Suggested activities
 orbital and escape velocity of a satellite Determine the period of a satellite around a planet Calculate the orbital and escape velocity of a satellite Describe the period, position and function of a geostationary satellite 	Engineering Project	The Mousetrap car. Using power from one mousetrap students design a mousetrap car to go the furthest distance. They can choose any number of wheels and any size of the wheels. The world record is 180m

The teacher should assess each students work continuously over the whole unit and compare it with the following description, based on the competencies, to determine whether the student has achieved the minimum required level.

Students at minimum requirement level

A student working at the minimum requirement level will be able to: analyze and predict, in quantitative terms, and explain the motion of objects in horizontal, vertical, and inclined projections; analyze and predict, in quantitative terms, and explain the motion of a projectile with respect to the horizontal and vertical components of its motion; analyze and predict, in quantitative terms, and explain uniform circular motion in the horizontal and vertical planes with reference to the forces involved ;describe Newton's law of universal gravitation, apply it quantitatively, and use it to explain planetary and satellite motion.

Students above minimum requirement level

Students working above the minimum requirement level should be praised and their achievements recognized. They should be encouraged to continue working hard and not become complacent.

Students below minimum requirement level

Unit 2: Electrostatics (19 periods)

- Demonstrate the principles of static electricity;
- Gain knowledge and understandings in static electric charge, electric field and force, electric potential capacitors and energy stored in capacitors
- Develop skills in performing electrostatic experiments, and solving problems related to charges at rest
- Appreciate the workings of some equipments which operate on the basis of electrostatic charges
- Describe and apply models of static electricity.

Competencies	Contents	Suggested activities
Students will be able to:	2.Electrostatics	
 State the law of conservation of charge. Describe and explain the charging processes: 	 2.1 Electric charge (6 period) electric charge and law of conservation of charge 	Demonstration :Electrostatic Attraction of water Adjust the faucet so it releases the smallest continuous stream of water possible. Bring the charged comb near the stream and note that it shifts the flow by means of electrostatic attraction
 charging by rubbing, conduction, and induction. Perform an experiment to charge an electroscope by conduction induction 	• charging processes (rubbing, conduction, and induction)	ACTIVITY: Hanging balloons with electrostatic force Inflate a balloon and then briskly rub one side of it on your hair. Place this surface of the balloon toward a wall or door and release it when it appears to be sticking. What can you conclude about the nature of the surfaces to which the balloon sticks?
 Describe the distribution of charge on a conductor of variable shape. Explain how lightning is formed. Describe the use of 	 charge distribution on a conductor lightning and lightning rod 	Demonstration: Induction Tear a sheet of news paper into small bits approximately one half cm in diameter .Place the paper bits under a glass plate supported by two books. Rub the glass vigorously with silk and notice how the paper jumps up to the glass. What attracts the paper to the glass?
 Describe the use of lightning rod. Describe the working principle of some equipments which operate on the principles of electrostatic charge. 	 applications of electrostatics (paint, spray, electrostatic photocopier) 	Discuss with the group. Demonstration: A typical 25 cm –diameter Van de graaf generator is capable of generating a 200,000-volt potential difference that can cause gasses in a fluorescent tube to glow. Darken the room, turn on the generator, and slowly move a fluorescent tube toward the generator and observe that it starts to glow.
 Describe the electrostatic hazards and useful application of electrostatics. State coulomb's law. 	• electrostatics danger	Why does the portion between the tube and your hand and the generator glow?

	Competencies	Contents	Suggested activities
•	Compare coulomb's law	2.2 electric forces and	
	and Newton's law of	fields (5 periods)	
	universal gravitation.	 Coulomb's law 	
٠	Compute the force acting	• Force between charges.	
	on a charge due to two	• Electric field strength.	
	other charges placed on	• Electric field lines.	
	the same plane (line of	• Electric field due to a	
-	action).	point charge.	
•	Calculate the force		
	between three charges	• Electric field inside and	
•	Dafine an electric field	outside a spherical	
	Define an electric field.	metallic conductor.	
•	diagrammatically the		
	electric field lines around		
	and between two point		
	charges.		
•	Calculate the electric		
	field strength at a point		
	due to charges placed		
	collinearly and at right		
	angles.		
٠	Distinguish between		
	electric field between		
	inside and outside a		
	spherical metallic		
	conductor.		
•	Define electric potential	2.3. Electric potential	
•	and it's SI unit.	(4 periods)	
•	absolute potential and	• Absolute potential and	
	notential difference	potential difference	
•	Show that $1N/C-1V/m$	 Equipotential lines and 	
•	Explain about	surfaces.	
-	equipotential lines and	• Electric potential energy.	
	surfaces.	• Conversion of	
•	Draw equipotential lines	mechanical to electrical	
	and surfaces in an	and electrical to	
		· · · · ·	
			49

Competencies	Contents	Suggested activities
 electric field. Define the term electric potential energy. Define what is meant by a dielectric material. Describe the structure of a simple capacitor. Define the term capacitance and it's SI unit. Use the circuit symbol to represent a capacitor. Apply the definition of capacitance to solve numerical problems. Explain the charging and discharging of capacitor. Identify combination of capacitors in series, parallel, and series-parallel. Define the term dielectric. Explain the effect of inserting dielectric in the gap between the plates of a parallel plate capacitor. Derive an expression for the effective capacitance of combination of capacitors in series and parallel. 	 mechanical. 2.4. Capacitors and capacitances (4 periods) Definition of a capacitor Charging and discharging processes Combination of capacitors in series. Combination of capacitors in parallel. Combination of capacitors in series-parallel. Parallel-plate capacitor. Capacitance of a parallel plate capacitor with and without dielectric. Energy stored in a capacitors. Applications of capacitors. 	Demonstration: Obtain large capacitors 350+mf from dead TV power supplies. They look like small beer cans. Charge the capacitor for a few minutes. Let it power a small light. Observe the behaviour of the light's decay. Invite student hypotheses about what happened. What was stored? What drained? If sufficient numbers of capacitors are available let student teams experiment with charging and discharging the capacitor. Invite them to make drawings of light intensity vs. time graph as the capacitor decays. Is the graph linear or not? Experiment with capacitors in series and parallel. Which takes longer to decay? Why? all done qualitatively. There should be much experimentation with capacitors (big ones from dead TV's) They store enough energy to power a bulb for a short time. Capacitors build up the idea of electron flow and the idea of transient currents. This treatment is much too theoretical. Get the big capacitors (like a beer can) or a film canister and let kids experiment with them. Less board work. Much more hands on. Put in a resistor. What happens to the discharge of the large capacitor? Put some in series, in parallel. What happens with the discharge?

Physics: Grade 10

Physics: Grade 10

Competencies	Contents	Suggested activities
• Solve problems on		
combination of		
capacitors		
• Define parallel plate		
capacitor.		
• Describe the factors that		
affect the capacitance of		
a parallel plate capacitor.		
• Calculate the capacitance		
of a parallel plate		
capacitor.		
• Compare the capacitance		
of a parallel plate		
capacitor with and		
without a dielectric.		
• Appreciate an expression		
for the electric potential		
energy stored in a		
capacitor.		
• Calculate the energy		
stored in a capacitor		
using one of the three		
possible formulae.		
• Draw electric circuit		
diagram for a simple		
capacitor, series and		
parallel connections of		
two or more capacitors		
using symbols.		
• State some uses of		
capacitors in everyday		
life.		

The teacher should assess each students work continuously over the whole unit and compare it with the following description, based on the competencies, to determine whether the student has achieved the minimum required level.

Students at minimum requirement level

A student working at the minimum requirement level will be able to : demonstrate an understanding of the concepts, principles, and laws related to electric forces and fields, and explain them in qualitative and quantitative terms; state Coulomb's law and compare it with Newton's law of universal gravitation; apply Coulomb's law quantitatively in specific contexts; compare the properties of electric and gravitational fields by describing and illustrating the source and direction of the field in each case; describe and

explain, in qualitative terms, the electric field that exists inside and on the surface of a charged conductor;

Students above minimum requirement level

Students working above the minimum requirement level should be praised and their achievements recognized. They should be encouraged to continue working hard and not become complacent.

Students below minimum requirement level

Unit 3: Current electricity (14 periods)

- Acquire knowledge and understandings in electric current, Ohm's law, combinations of resistors, measuring instruments, emf of a cell, electrical energy and power.
- Conduct investigations and analyze and solve problems related to electric charges, electric circuit.
- Evaluate and describe the social and economic impact of technological developments related to the concept of electricity.
- design and build electrical circuits that perform a specific function.
- Analyze the practical uses of electricity and its impact on everyday life.
- design and conduct investigations into electrical circuits found in everyday life and into the quantitative relationships among current, potential difference, and resistance.
- Evaluate the social, economic, and environmental costs and benefits arising from the methods of electrical energy production used in Ethiopia.

Competencies	Contents	Suggested activities
 Students will be able to : define electric current and it's SI unit Explain the flow of electric charges in a metallic conductor. compute the number of electrons that pass a point at a given length of time when the current in the wire is known. 	 3. Current electricity 3.1 Electric current (2 periods) flow of electric charges in a metallic conductor 	 Make it clear that most substances obey ohm's law but it is not a true universal law of physics. Many important substances, like semiconductors and transistors are not Ohmic. Demonstration: Use a compass needle to determine a magnetic North. Wrap approximately 30 turns of thin – gauge insulated copper wire around this compass in a north/south direction, and connect it to a 1.5 v light bulb that is connected to a 1.5V battery. Note that when the circuit is closed, a current will flow, the lamp will glow, and the needle will move. This simple galvanoscope can be used whenever you want to detect the presence of small currents. Activity 1: Thermal and electrical conductivity both depend upon the transport of energy by electrons. To test this hypothesis, examine the electrical conductivity of copper, steel, and plastic by observing the deflection of galvanoscope needle when equal- sized pieces of copper, steel, or plastic are substituted for the light bulb. Rank the substances tested from high to low electrical conductivity All electrochemical cells require two electrodes made of two different conductors, an electrolyte solution (a solution that conducts electricity) that reacts with the electrodes, and a conductive wire through which electrons may flow.
	• Electric energy from chemicals	Activity 2: Roll a lemon, orange grape fruit, or other citrus on a firm surface to break the internal membranes. Cut strips (approximately 4cm×3cm) of copper and zinc sheet metal and insert these in the fruit so they are approximately 1cm apart. Attach the test wires of a volt-ohm-milliammter to the strips and measure the electric potential and current. Will the voltage of your wet cell change if you change the size of the electrodes?

Competencies	Contents	Suggested activities
Competencies	• Electric energy from heat	Suggested activities Try it. Will the voltage change if you construct the cell using different electrodes? Demonstration: the transformation of heat energy directly into electric energy. Thermocouple (seebeck effect) refers to the generation of electricity in a circuit composed of two wires whose junctions are at different temperatures. Create thermocouple junctions at both ends of a section of iron wire by twisting the ends together with copper wires. Place one copper /iron junction in a beaker with ice water while leaving the other junction outside. The two remaining ends of the copper wires should be connected to a sensitive galvanometer. Heat the exposed junction with a Bunsen burner or match and record the current. Does the current increase or decrease if the heat source is removed? Is the change in current immediate? Discuss these questions. Activity 3: Cells in series and parallel. Let the students do these activities in groups. The citric acid in lemons or oranges provides an excellent electrolyte solution for a simple wet cell. After rolling the fruit firmly on a table to rupture its internal membranes, insert two electrodes made of two different metals, making certain the electrodes do not touch. Nails may serve as iron electrodes, stripped electrical wires may serve as copper electrodes, silver
 describe factors affecting the resistance of a conductor. write the relationship between resistance R, resistivity ρ,length l and cross-sectional area A of a conductor. compute the resistance of compute the resistance of 	 3.2 Ohm's law and electrical resistance (3 periods) resistivity and conductivity electric circuit 	jewelleries may serve as silver electrodes. Add a second and then a third similar ⁶⁷ fruit cell ⁷⁷ in series with the first cell and record the voltages. Continue adding cells until the light is brightly lit .Add a second and then a third similar "fruit cells" in parallel with the first one and record the voltages. What is the advantage of adding cells in series, in parallel? Discuss Demonstration: Ohm's law A resistor is an electrical component that opposes the flow of current in a circuit. Since pencil "lead' is made of carbon, an element frequently used in resistors, we can use it here. Connect a flash light bulb (1 to 2 v) in series with a pencil lead and a 6v battery. Turn off the room lights and observe the brightness of the bulb. Move one wire contact along the length of the pencil lead and observe the changes in the intensity of light. Repeat the activities with a pencil lead of different diameter. What influence does the diameter of the resistor have upon the net resistance? What effect does the length of the resistive path have upon the total resistance? Discuss these questions
 a conductor using the formula R=pl/A find the relationship between resistivity and 		Use a board with 6-8 clips to make circuits.

Physics: Grade 10

Physics: Grade 10

 conductivity. construct and draw electric circuit consisting of source, connecting wires, resistors, switch, bulb, using their symbols. Explain why an ammeter should be connected in series with a resistor in a circuit. Explain by an advector in a by a b	caps to avoid punch ielectric film. d a circuit and have
 construct and draw electric circuit consisting of source, connecting wires, resistors, switch, bulb, using their symbols. Explain why an ammeter should be connected in series with a resistor in a circuit. Explain why an electric in a circuit. 	electric film. d a circuit and have
 electric circuit consisting of source, connecting wires, resistors, switch, bulb, using their symbols. Explain why an ammeter should be connected in series with a resistor in a circuit. Functional and the circuit consisting of source, connecting the connected in series with a resistor in a circuit. 	d a circuit and have
 of source, connecting wires, resistors, switch, bulb, using their symbols. Explain why an ammeter should be connected in series with a resistor in a circuit. E be being the structure of the structure	
 wires, resistors, switch, bulb, using their symbols. Explain why an ammeter should be connected in series with a resistor in a circuit. 	
 bulb, using their symbols. Explain why an ammeter should be connected in series with a resistor in a circuit. 	
 symbols. Explain why an ammeter should be connected in series with a resistor in a circuit. 	
 Explain why an ammeter should be connected in series with a resistor in a circuit. 	
should be connected in series with a resistor in a circuit.	
series with a resistor in a circuit.	
circuit.	
• Explain why a voltmeter	
should be connected in	
parallel across a resistor	
in a circuit.	
• DO EXPERIMENTS (at	
least have students touch	
the equipment) using an	
ammeter and a voltmeter	
to investigate the	
relationship between	
current and p.d for	
metallic conductors at	
constant temperature.	
• identify combinations of 3.3 Combinations of	
resistors in series, resistors	
parallel, and series- (3 periods)	
parallel connection.	
derive an expression for • series combination	
the effective resistance of	
resistors connected in • parallel combination	
series.	
• derive an expression for	
the effective resistance of • series-parallel	
resistors connected in combination	
parallel.	
• Compute the effective	
resistance of resistors	

Physics: Grade 10

Comnetencies	Contents	Suggested activities
connected in series	Contents	Suggesteu ucurutes
 Compute the effective resistance of resistors connected in parallel. Calculate the current through each resistors in a simple series, parallel, and series-parallel combinations. Calculate the voltage drop across each resistor in a simple series, parallel, and series-parallel connections. 		
 Define electromotive force of a cell. Distinguish between emf 	3.4 Emf and internal resistance of a cell (3 periods)	Activity 4: series and parallel circuits. Let the students do these activities in groups.
 Write the relationship between emf, p.d, current, and internal resistance in a circuit. 	• combination of cells in series and parallel	third bulb in series with the bulb. Is there any change in the brightness of the first bulb when the second and third bulbs are added? Once all bulbs are lit, remove one of the bulbs. What happens to the brightness of the others?
 Use the equation V=ε-Ir to solve problems in a circuit 		Confirm their understandings Connect one bulb to a battery and note its brightness. Now connect a second and third bulb in parallel with this bulb.
• Identify cells combinations in series and parallel.		Is there any change in brightness of the first bulb when the second or third ones are added? Once all bulbs are lit, remove one. Is there any change in the brightness of the remaining bulbs? Confirm their understandings.
• Compare the emf of combinations of cells in series and parallel.		Demonstration: Measuring electromotive force and terminal voltage of a source. Set up a circuit consisting of a dry cell, a bulb, a switch and a voltmeter. Take the reading in the voltmeter while the switch is on. Then another reading while the switch is off. Compare the two readings. Which one is larger? Which reading is the e.m.f? Discuss with the group
• Define electrical energy and power in an electrical circuit.	3.5 Electric energy and power (2 periods)	Activity 5: Which appliances in your home consume the greatest amount of energy? Is it the refrigerator? The TV set? The electric stove? You can find out by inspecting appliances in your home and determining the number of watts each consumes and multiplying this by the

Physics: Grade 10

	Competencies	Contents	Suggested activities
•	Find the relationship between KWh and joule. Use P= VI=V2/R=I2R to solve problems in electric circuits.	• cost of electric energy	number of hours operated. By law, each electric device must specify power requirements, and these are generally recorded on a small tag located on the appliance or on the power cable connected to it. Inspect all the appliances in your home and record power requirements in the table.
•	use W=VIt=I2Rt=V2t/R to compute electric energy dissipated in an electric circuit	3.6 Electric installation and safety rules (1 period)	New designs for cars employ hybrid motors. Cars use both electricity and gasoline for power. When going down hill ,instead of standard brakes which converts kinetic energy into heat ,these cars capture energy by using "electric brakes "that recharge the battery or convert the
•	perform calculations on cost of electrical energy expressed in KWh	Engineering project	energy into rotational energy in a massive fly wheel. Students design on paper a hybrid car that captures as much energy as possible. Teams may wish to build a model of their design, showing innovative ways to save energy.

The teacher should assess each students work continuously over the whole unit and compare it with the following description, based on the competencies, to determine whether the student has achieved the minimum required level.

Students at minimum requirement level

A student working at the minimum requirement level will be able to :define and describe the concepts and units related to electrical systems(e.g., emf, electric potential, resistance, power, energy); compare direct current and alternating current in qualitative terms, and describe situations in which each is used; analyze, in quantitative terms, circuit problems involving potential difference, current, and resistance; use appropriate meters (analog or digital), to measure electric potential difference, current, and resistance in electrical circuits; construct simple electrical circuits using common tools appropriately and safely; draw, by hand schematic diagrams to represent real circuits; analyze, in quantitative terms real circuits using Ohm's law; describe common applications of simple circuits, and identify the energy transformations that occur (e.g., energy transformations in one of the following appliances or devices: refrigerator, kettle, food mixer, amplifier, television set, light bulb, oscillator, electromagnet, electric motor, garage door opener); identify and describe proper safety procedures to be used when working with electrical circuits, and identify electrical hazards that may occur in the science classroom or at home.

Students above minimum requirement level

Students working above the minimum requirement level should be praised and their achievements recognized. They should be encouraged to continue working hard and not become complacent.

Students below minimum requirement level

Unit 4: Electromagnetism (20 periods)

- demonstrate an understanding of the properties, physical quantities, principles, and laws related to electricity, magnetic fields, and electromagnetic induction;
- carry out experiments or simulations, to demonstrate characteristic properties of magnetic fields and electromagnetic induction;
- Identify and describe examples of domestic and industrial technologies that were developed on the basis of the scientific understanding of magnetic fields.(e.g. generator, motor, and transformer)
- Appreciate the link between electricity and magnetism, the contributions electricity and magnetism to modern life.

Competencies	Contents	Suggested activities
Competencies Students will be able to : • investigate the domain theory of magnetism	 Contents 4. Electro magnetism 4.1 Magnetism (4 periods) Magnetic Domains Magnetization Magnetic shielding Geomagnetism 	Suggested activities Activity 1: To investigate magnetic domains, magnetization, demagnetization Fill a test tube two thirds full with iron filings or shredded steel wool and approach the north and then the south end of a compass needle with the end of the tube. Is one end of the needle more attracted than the other? Record the maximum angle to which the needle is deflected. Repeat these observations after stroking the tube 50 times with a permanent magnet and after shaking the test tube vigorously for one minute. In which situation was the test tube more highly magnetised? Why? Let the students' discuss in groups. Demonstration: Magnetization by heating and cooling within a strong magnetic field Use insulated tongs or pliers to heat a nail in the hottest part of the flame until it glows. Remove the nail from the flame and place it lengthwise on a permanent bar magnet. After the nail has cooled, measure its magnetic strength by determining the number of small paper clips that can be suspended in a chain from one end .Compare the magnetic strength of this nail with the strength of one that was not heated but rested on the permanent bar magnet for an equal
		 length of time. Record your findings in the table. Demonstration: Magnetic shielding Support a bar magnet using a stand on a table, and attach a thread to a paper clip and suspend it below the magnet. Given no disturbances, the paper clip will remain float in space indefinitely due to magnetic lines of force between the magnet and the paper clip. Slide a small sheet of paper in the gap between the paper clip and the magnet, being careful not to touch either. Does paper interfere with the magnetic field? Repeat the process using a sheet of plastic, aluminium foil, and the lid of a "tin "can. Which, if any of the above, interfered with the magnetic field and allowed the paper to fall? Activity 2: Let students do these activities in groups Cut the bottoms from two paper cups of different sizes, two plastic cups of different sizes, two

Competencies	Contents	Suggested activities
	12 Concerts of momentic	iron ("tin") cans of different sizes. Place a compass on a table and record the direction of magnetic north. Now place two bar magnets 7 cm to the east and west of the compass so that the N-pole of one magnet faces the S- pole of the other and record the angle of deflection. Remove the magnets, place a tin can over the compass, replace the magnets, and again record the angle of needle deflection. Remove the magnets, place a second can around the first, replace the magnets, and again record the angle of compass-needle deflection. Does the iron interfere with the magnetic field? Repeat the process using paper or plastic cups. Which of the substances best protects or shields the compass from the magnetic field of the bar magnets? Confirm their understanding.
 describe magnetic field perform and describe an 	4.2 Concepts of magnetic field (3 periods)	Demonstration: Magnetic fields in two dimensions
 perform and describe an experiment that demonstrate the existence of magnetic field around a current-carrying wire sketch the resulting 	 Magnetic field around a straight current carrying wire 	Place a strong bar magnet under a clear sheet of glass. Position the transparent sheet so it is level and then repeatedly tap a beaker filled with iron filings so they fall evenly over the surface. The iron filings should align themselves with the magnetic lines of flux. The points where lines appear to converge represent locations of greatest magnetic flux density. Magnetic flux density is a measure of magnetic force and is defined as the number of flux lines per unit area. Place a number of small compasses around a magnet and draw a diagram showing the
magnetic field lines		orientation of the needles.
pattern of a current-		Demonstration: Magnetic fields in three dimensions
 apply the right –hand 		Demonstration. Magnetic fields in three dimensions
rule to tell the direction of magnetic field lines around a straight current- carrying wire		Place iron filings in the bottom of a glass jar and fill 90% of the remainder of the jar with salad oil. If you don't have iron filings, you may create iron shreds by rubbing two pieces steel wool together rapidly. Shake the container vigorously until the iron filings are evenly distributed throughout the container and then expose the jar to the magnetic fields of bar magnets outside
 calculate the magnetic field strength at a point due to a straight current carrying wire 		the jar. Allow time for the iron filings to align with the magnetic field. Let the students draw a diagram of the field lines when the S-pole of one magnet is opposite the N-pole of another.
• sketch the magnetic field lines pattern of a current		
 loop sketch the magnetic field lines pattern of a solenoid 	• Magnetic field of a solenoid	
 specify the polarity of a solenoid using a right – hand rule 		

Physics: Grade 10

Competencies	Contents	Suggested activities
• compute the magnetic	с	
field strength at the		
centre of a solenoid		
• describe the factors o	on	
which the force on a		
moving charge in	d	
Demonstrate the relat	tion 4.3 Magnetic force	
• Demonstrate the relation $B=mv/qR$ from the fa	act (6 neriods)	
that the centripetal fo	• Magnetic force on a	
is provided by magne	etic moving charge	
force	• Magnetic force on a	
• Compute the magnitu	ide current carrying	
of a force acting on a	conductor	
moving charge in a	Magnetic force between	
uniform magnetic fiel	two parallel current	
• Determine the direction	ion carrying conductors	
of a force acting of a	Definition of ampere	
right hand rule	• Force on a rectangular	
 demonstrate the 	current carrying wire	
existence of a force o	on a	
straight current carryi	ing	
conductor placed in a	a	
magnetic field		
• Derive the expression	n	
$F=BIlsin\theta$ from $F=qv$	vB	
sinθ		
• Apply right hand rule	e to	
when current flows		
perpendicular to a		
uniform magnetic fiel	ld	
• Describe the factors of	on	
which the force of a		
moving charge in the		
magnetic field depend	d	
• Calculate the magnitu	ude	

Competencies	Contents	Suggested activities
 of a force on a straight current carrying wire placed perpendicular to a uniform magnetic field Compute the magnitude and direction of force 		
 between two parallel current carrying conductors in a uniform magnetic field Define the SI unit 		
 Ampere Draw a diagram to show the forces acting on a rectangular current carrying wire in a uniform magnetic field 		
• Draw diagrams to show the action of a force on a simple DC motor and a moving coil galvanometer		
• Define the magnetic flux and its SI unit	4.4 Electromagnetic induction (7 periods)	Demonstration:
• State Faraday's law of induction	 Magnetic flux Faraday's law of 	use the weighted bicycle wheel's rims as the object of the eddy current production. Bring the magnet close to the rim. It must be non-ferrous. The magnet will slow the wheel's spinning noticeably. If one has some background in magnetism and rotational dynamics, one can
 perform simple experiments that demonstrate an induced emf caused by changing magnetic flux 	 Lenz's law Inductance(self and mutual inductances) 	calculate the deceleration from the induced current. Have a metal disk rotating quickly. Make the disk out of a non-magnetic metal like Aluminum (use thicker metal like used for roofing).Bring a strong magnet near the disk. The magnet will induce a current in the metal by Faraday's law. The magnetic field will oppose that of the
 State Lenz's law Indicate the direction of induced surgery sizes 		cannot become magnetic - Aluminum is not structurally a magnet.
the direction of motion of a conductor and the direction of a magnetic field		Demonstration: drop a strong small magnet through a non-ferrous tube (without any seams). A thicker copper pipe is fine and better. Make the tubes about one meter long. Have two tubes. Drop a rock through one and the magnet through the other. The magnet will induce an electric current to oppose the motion of the magnet. It will float down the tube quite

Competencies Suggested activities *Contents* slowly. If you put a lot of windings around the tube at one point, say 1,000 turns or more. It • Describe the factors that will light up a small bulb for a flash. affect the magnitude of induced emf in a Demonstration: conductor Suspend a non-ferrous ring from two points. Let it swing freely and stop it. Put the magnet on • Describe the link a stick and push it through the ring, then it will pump the ring like a kid pumps height on a between electricity and swing. magnetism • Apply Faraday's law to Peer instruction on Faraday's law calculate the magnitude Let the students discuss in a group about the law. of induced emf Demonstration: define inductance and it's The instructor runs a current through two thin wires or pieces of very thin foil (from gum SI unit wrappers). The wires or foil bend from the magnetic fields • Distinguish between self The instructor also uses the Fresnel overhead to project images of Iron filings sprinkled on top and mutual inductance of a glass with a magnet beneath • Apply the definition of inductance to solve Classroom Demonstration: Stored energy in a magnetic field. simple numerical problems Use a Fly back (step-up) transformer from an old TV. • Explain the action of the See http://en.wikipedia.org/wiki/Flyback_transformer simple a.c generator • BUILD a simple AC • D.c motor motor. • Explain the action of the simple AC. generator • Compare the actions of • A.c and d.c generator d.c and a.c generators • Draw a diagram of a transformer • Give a simple explanation of the These transformers step up voltage drastically. Connect a small bulb in series with a 12V • Transformer principles to operate a (step up and step down) source and a flyback transformer. It will light for an instant then stop. transformer PEER INSTRUCTION: • Identify that for an ideal Why does the bulb light and then stop? transformer Pout= Pin Check for any heart problems. Invite students to make a human wire complete loop in series • Show that for an ideal with the flyback connected to a 1.5 V battery (not the 12V). Release the connection. A small transformer: Vs/Vp=Ns/Np=Ip/Is

Physics: Grade 10

Competencies	Contents	Suggested activities
• Apply the transformer		current will pass through. It will last milliseconds. What is the source?
formulas to solve simple		PEER INSTRUCTION
problems		Inductance. Lenz and Faraday. Decaying fields.
		The primary coil of a transformer is connected to a battery, a resistor, and a switch. the
		secondary coil is connected to an ammeter .When the switch is thrown closed ,the ammeter
		shows
		Card 1-zero current
		Card 2-a non zero current for a short instant
		Card3- a steady current
		Let students discuss this question and confirm their understanding
		Decaying are transient currents. Some Uses for transient currents are:
		Spark plugs in a cal.
		Fleatric fances for animals
		Electric rences for animals.
		Activity
		Make a high number of windings from a broken transformer's wires. Let the magnet fall
		through the coils. It will cause a transient electric current that can light up a small bulb
		Project work: Build an AC motor.
		The cost of materials is very low, next to zero.
		Build either the toothpick motor or the cork motor:
		See:
		http://www.ceressoft.org/Files/emotors.htm
		This describes how to build an AC motor
		Student groups build a motor at their desks.
		They measure the rotation rate. The fastest rotators convert the electrical energy to kinetic
		energy most efficiently. These get higher grades.
		Engineering Challenge:
		Build an AC motor with any design you choose that has the fastest rotation. The motor must
		have a small piece of reflecting material that bounces back a flashlight beam. That beam hits a
		simple photo transistor circuit connected to a buzzer. Students count the buzzes in 2 minutes.

Physics: Grade 10

The teacher should assess each students work continuously over the whole unit and compare it with the following description, based on the competencies, to determine whether the student has achieved the minimum required level.

Students at minimum requirement level

A student working at the minimum requirement level will be able to : describe the terms magnetic domains, magnetization, magnetic shielding; identify the properties of magnetic field interpret and illustrate the magnetic field produced by a current flowing in a long straight conductor and in a coil; identify the factors that affect the magnitude and direction of the electric current induced by a changing magnetic field; describe the properties, including the three-dimensional nature, of magnetic fields; describe and illustrate the magnetic field produced by an electric current in a long straight conductor and in a solenoid; analyze and predict, by applying the right-hand rule, the direction of the magnetic field produced when electric current flows through a long straight conductor and through a solenoid; state the motor principle, explain the factors that affect the force on a current-carrying conductor in a magnetic field, and, using the right-hand rule, illustrate the resulting motion of the conductor; analyze and describe electromagnetic induction in qualitative terms, and apply Lenz's

law to explain, predict, and illustrate the direction of the electric current induced by a changing magnetic field, using the right-hand rule; compare direct current (DC) and alternating current (AC) in qualitative terms, and explain the importance of alternating current in the transmission of electrical energy; explain, in terms of the interaction of electricity and magnetism, and analyze in quantitative terms, the operation of transformers (e.g., describe the basic parts and the operation of step-up and step-down transformers; solve problems involving energy, power, potential difference, current, and the number of turns in the primary and secondary coils of a transformer).

Students above minimum requirement level

Students working above the minimum requirement level should be praised and their achievements recognized. They should be encouraged to continue working hard and not become complacent.

Students below minimum requirement level

Unit 5: Electronics (11 periods)

- Gain elementary knowledge and understandings in vacuum tubes devices, thermionic emission ,CRO, semiconductor diodes, and transistors
- understand common applications of electrical and electronic circuits, and the function and configuration of the components used
- Investigate the development and application of electrical technologies and their impact on local and global economies and the environment.

Competencies	Contents	Suggested activities
Students will be able to :	5. Introduction to	
• Define the term electronics	electronics	Use a model of CRO if it is available or use a well labelled diagram of the cathode –ray oscilloscope for your explanation of the structure and function of the CRO
 Mention the importance of electronics in their daily life. Concept map: 	 5.1 Vacuum tube devices (3 periods) thermionic emission cathode ray oscilloscope 	Don't emphasize the CRO. It is a relatively specialize piece of equipment that one doesn't understand until one uses one. Deeper study of the TV tube is more helpful.
all items in daily life that use electronics.	(CRO) • using CRO	Use the Human Wire to explore semiconductors and PN junctions.
State what is meant by thermionic emissionDescribe the behaviour of	some uses of oscilloscopeTV picture tube	Students modelling silicon have 4 electron rocks. Those modelling boron have 3 rocks and a basket.
 vacuum tubes describe the function of cathode ray tube describe the uses of a 	5.2 Conductors ,semi conductors and insulators (1 periods) 5.3 Semi conductors	It is important to model the 3 dimensional structure of the semiconductor. Use toothpicks and gummy candy to build a tetrahedral lattice (have a marshmallow represent the hole) have an extra gummy piece represent the extra electron from the doped N material, like arsenic.
 describe the discs of a cathode ray tube represent both d.cand a.c on current –time or 	 (impurities, doping) (4 periods) Semi conductor diode (I-V 	Discuss how a p-n junction can be formed using p-n junction diagrams .Explain the apparent movement of 'hole' and 'electron' movement and how a potential barrier is set up in the depletion layer
 voltage-time graphs use the current –time or voltage-time graphs to find the period and 	 characteristic) P-n junction diode as a rectifier(qualitative treatment) 	Demonstration: demonstrate the current –voltage characteristics of a semiconductor diode. If the materials are not available, discuss the current-voltage characteristics of a semiconductor diode using a typical characteristics curve for a silicon diode.
 trequency of alternating currents or voltages distinguish between conductors, semiconductors, and 	LEDLDRThermistorPhotodiode	Using a circuit diagram of half wave rectifier circuit, explain the rectification of a diode when an a.c supply is used. Explain briefly how a bridge –rectifier gives a full wave rectification and further smoothing can be made by the use of a capacitor.
insulatorsgive examples of semi-		Demonstration: show the amplification action of a transistor Demonstrate the amplification action of a transistor using transistor amplifier circuit. Ask

Competencies	Contents	Suggested activities
 conductor elements distinguish between intrinsic and extrinsic semiconductors describe a semi- conductor in terms of charge carriers and resistance 		students to calculate the current gain Explain briefly how a voltage amplification can be achieved using well drawn simple one transistor amplifier circuit
 explain doping to produce the two types of semi-conductors 	 5.4 Transistors(p-n-p, n-p-n) (3 periods) Transistor action 	The explanation should all be done qualitatively. The key is "why does the transistor amplify current? Discuss about photo voltaic cells, making electricity directly from the sun
 identify semi-conductors as P-type and N-type describe the mode of conduction by the 	• Logic gates	Let the students identify a diode, an LED, a transistor, IC, a resistor, and a capacitor from a mixed collection of such items.
 define the term diode and show it's circuit symbol draw a current vs voltage characteristics (graph)to show the behaviour of p- n junction describe how a semi 		Project work: Students should know about photovoltaic cells. Current efficiencies are about 7-9%. Higher cost cells produce efficiencies of about 30%. Calculate the number of meters of photovoltaic cells needed to supply all of Ethiopia's energy needs. Ethiopia has potential to generate 30,000MW of power using hydro plants. See
 conductor diode can be used in a half –wave rectification sketch voltage time graphs to compute the variation of voltage with time before and after 		Current installations are as large as 160Mwatts, equal to the largest hydro plant in Ethiopia. Ethiopia does have significant hydroelectric potential, unlike many African nations. But it is dependent on rainfall. Solar production is constant, though there must be storage at night.
 distinguish between direct current from batteries and rectified alternating current by consideration of their voltage time graphs 		

Physics: Grade 10

Physics: Grade 10

	Competencies	Contents	Suggested activities
•	show the circuit symbols		
	of semi conductor		
	devices such as		
	thermistor, LED, LDR,		
	and transistors		
•	distinguish between p-n-p		
	and n-p-n transistors		
•	identify the base, emitter		
	, and collector of a		
	transistor		
•	use the following terms		
	correctly: forward biased		
	and reverse biased		
•	Describe the behaviour of		
	semi conductor devices		
	such as thermistor,		
	LED, LDR, photodiode,		
	and transistors (all		
	qualitatively)		
•	Use the circuit symbols		
	for the gates		
•	Draw the truth tables for		
	the different logic gates		
	and for a combination of		
	logic gates		
•	Explain the action of		
	logic gates: NOT, OR.		
	AND, NOR, NAND		

The teacher should assess each students work continuously over the whole unit and compare it with the following description, based on the competencies, to determine whether the student has achieved the minimum required level.

Students at minimum requirement level

A student working at the minimum requirement level will be able to: describe the function of basic circuit components (e.g., power supplies, resistors, diodes, fuses, circuit breakers, light-emitting diodes [LEDs], capacitors, and switching devices), describe the characteristics of transistors, identify the logic gates and explain their actions.

Students above minimum requirement level

Students working above the minimum requirement level should be praised and their achievements recognized. They should be encouraged to continue working hard and not become complacent.

Students below minimum requirement level

Unit 6: Electromagnetic waves and geometrical optics (16 periods)

- acquire knowledge and understanding of the properties of light and the principles underlying the transmission of light through a medium and from one medium to another;
- investigate the properties of light through experimentation, and illustrate and predict the behavior of light through the use of ray diagrams and algebraic equations;
- evaluate the contributions to such areas as entertainment, communications, and health made by the development of optical devices and other technologies designed to make use of light.

Competencies	Contents	Suggested activities
 Students will be able to : Explain how electromagnetic waves are produced Describe the nature of electromagnetic waves Compare mechanical and electromagnetic waves draw diagrams to represent transverse waves use straight lines to represent the direction of energy flow(rays) identify that electromagnetic waves emitted by the sun have a very wide continuous range of frequencies s (and wave lengths) explain some uses electromagnetic radiation explain what is meant by the rectilinear propagation of light state the laws of reflection 	 6. Electromagnetic waves and geometrical optics 6.1 Electromagnetic waves (3 periods) transverse nature of electromagnetic waves speed of electromagnetic waves electromagnetic spectrum (elementary facts about their uses) 	Use the "human wave" for transverse forms. In one row, one set of students uses hands to model the electric field. The student sitting beside them models the magnetic field. The students apply Faraday's law that increasing E fields induce a B field. Decreasing E fields induce a B field in the opposite direction. The rows of students hold a rope to model the increasing and decreasing E and B fields. Or alternately, The instructor uses a large ball to model the motion of a charge. Its E field changes with motion. The change in the E field propagates with the speed of light. Use just one wave length at first. Start with just the E field wiggle. Add the B field later when the students understand the mechanics of the emulation process. What is moving? Make it clear that it is the electric field at that point in space, it is not a "thing" that is moving. Add in the B field at 90 degrees. Use cylindrical lenses if possible. VERY IMPORTANT: use multiple rays. Do not rely on the 3 ray model. Students do not understand it. They think that the light is an arrow. The arrow only indicates direction, not the wave itself. Demonstration: MIRROR lab. Student groups: flashlight, comb, paper and mirror. Send light into a reflecting mirror using a comb. Send multiple rays in. Match to the paper it is on the "say left edge" of the light passing through the comb and bouncing off the mirror. Construct the rays that appear to be coming from the virtual image. Break every other tooth of the comb if the image is too faint. Do the experiments first before any equations. Concept first, equations later.

Competencies	Contents	Suggested activities
 perform experiments to test these laws using plane mirror use the laws of reflection to explain how images 		Send light into a lens using a comb. Send in multiple rays. Notice that one ray comes through unchanged. Select a ray on the periphery. That one goes through the focus. Note traditional text drawings that show only 3 rays, there are countless numbers of them.
are formed in a plane mirrorfind the position of a virtual image produced		Do not use pins. This confuses students. What does a pin have to do with light? Use the light wave itself to investigate behaviour. On all experiments use the comb to make multiple rays of light.
by a plane mirror using a ray tracing method	 6.2. Reflection of light (6 periods) laws of reflection 	Repeat the Human Medium experiment with the piece of wood "light wave" entering the student body as the "medium" It bends as it goes slower.
use the laws of reflection to solve problemsgive examples of the uses	 image formation by a plane mirror 	Use the "Human Optical Bench" and the Fresnel lens to perform investigations of Two slit diffraction:
of plane mirrorsdistinguish between concave and convex	 image formation by curved mirrors mirror equation	You will need the Freshel lens to make a simple overhead projector to put the pattern on the ceiling. The key to the optics experiments is a Freshel Lens.
mirrors		Here is what it looks like in a diagram.
 identify the meanings of terms in relation to concave and convex mirrors: principal axis, principal focus, radius of curvature, magnification, 		Traditional convex lens
 distinguish between real and virtual image apply the appropriate sign convention when using 		Fresnel lens
 mirror equations find the position and nature of the image formed by a concave and a convex mirrors using 	 6.3 Refraction of light (7 periods) laws of refraction (refractive index, real and apparent depth) 	All the glass is sheared away with the lens replaced by concentric prisms. This is huge light gathering power. It works in daylight easily. It will do great solar cooker experiments as well.
 mirror equation and a ray tracing method use the relation magnification=Si/So=hi/ 	 total internal reflection and it's uses 	Activity: Light is not observed to diffract under normal circumstances because its wavelengths are much smaller than openings of obstructions with which we are familiar. To observe the diffraction of light it is there fore necessary to create an opening with a diameter

Competencies	Contents	Suggested activities
 o to solve problems give examples of the uses of curved mirrors(concave and convex mirrors) define the term refraction state the conditions in which refraction ecourts 	 refraction through thin lenses thin lens formula magnification power of a lens combination of thin lenses 	of approximately the same dimension as wavelength of light. Use two pencils or other straight edges. Place apiece of tape or around the shaft of one pencil to provide a spacer between them and then place them side by side. Darken the room, peer through the slit between the pencils, and observe a candle flame at a distance of 2m.The students should be able to observe an interference pattern. Rotate the pencils and describe the changes in the interference pattern. Increase and decrease the pressure on the shafts to alter the width of the gap and describe the changes in the interference pattern
 perform experiments to test the laws of refraction draw a diagram representing the passage of light rays through a rectangular glass block give examples of observations that indicate light can be refracted identify that the passage of a ray of light through a parallel_sided 	 optical instruments(human eye ,microscope, telescope) Optics of the human eye: far and near sightedness and corrections. 	Activity: Model diffraction with a liquid in the Fresnel plate. "Bound by clay dikes" It will project on the ceiling. Use colored water to emphasize the pattern. Use a small electric motor with an eccentric cam to make water waves to go through the double slit. Observe the interference. Perform some experiments to model different ways to correct human vision. Add a lens to increase the focal length. Add a lens to decrease the focal length. Fresnel lens. Put a paper over 1/2 of it. Does it make ½ an image? Use the Fresnel lens to quantitatively explore the lens equations. Use the Human Optical bench model. Have a bright source (one red flashlight, one green or white one. Have students draw in the rays on a lab sheet.
 transparent medium result in the lateral displacement of a ray define the refractive index of a material use Snell's law to solve simple problems use the formula refractive 	 Diffraction of light. Two slit diffraction Diffraction by reflection grating dispersion of light 	Demonstration: the visible spectrum, let the students do it in groups. To disperse white light into the spectrum requires one prism, and to recombine the spectrum requires a second prism. If there is no access to prisms students can make glass/water prisms with microscope slides, tape, and modelling clay. After filling the triangular container with water, seal the other end with clay. Spectral displays are best observed under very dark conditions. Place cardboard or other material over the windows of your room. If light is shining upon a window, you may use it as a light source simply by cutting a hole in the cardboard on that window. Position the prisms with respect to the light source. Adjust the
 index=real depth/apparent depth to find the refractive index of a liquid and a solid in the form of rectangular glass block define the critical angle θc explain with the aid of a diagram ,what is meant 	 Looking at spectra using a spectroscope. refraction through a prism dispersion of light and colour mixing 	positions of both prisms so the light dispersed from the first prism is recombined to produce white light by the second. Trace and identify the positions of the prisms and the positions of the various bands of colours on a piece of white paper.

I hysics. Orace 10	Physics:	Grade	10
--------------------	----------	-------	----

Competencies	Contents	Suggested activities
by critical angle and tot internal reflection	al	Activity: The CD spectroscope.
Identify the conditions necessary for total internal reflection to occur		Students build a group spectroscope using a cracked CD. They observe spectra of a flashlight, a regular bulb, an infra red bulb, a flashlight with a colored filter, sunlight, a fluorescent bulb. Let them take it home and look at other spectra such as a street light, or the moon.
• perform calculations involving critical angle and total internal		Students observe sunsets. They can see some absorption lines with the instrument.
 describe how total internal reflection is use in optical fibres 	ed	double slit. The CD must be at an angle so that light bounces off the reflective surface but each groove bounces light off a bit later than the neighbour slit. There is interference which makes the light add along some angles and cancel along others.
 distinguish between convex and concave lenses 		Demonstration: Measuring the solar constant.
 identify the meaning of the following terms in relation to converging and diverging lenses: principal focus, princip axis, focal point, radius of curvature magnification 	al;	Use the Fresnel lens to measure the heat input from the sun. It should be about1, 366 watts per square meter, but the atmosphere filters out many wavelengths. The Fresnel will not pass IR(infrared). They calculate the efficiency of the class demonstration.
 apply the appropriate sign convention when using thin lens equation 	ıs	
• find the position nature of the image formed by convex and a concave lens using the thin lens formula and a ray tracin method	a Ig	Project work: Students design a collector that will concentrate and capture the heat of the sun the most effectively. One should be able to get a kilowatt per square meter. The challenge is to find the best design that will heat up 50cc of water to the highest temperature in 10 minutes.
 define the power of a lens explain how image is formed due to 		Students may employ a Fresnel lens (borrowed from the class for their demo) or some other reflective surface, such as mirrors or reflective aluminium. The limit is that the area of the reflector must be less than 1 square meter

Physics: Grade 10

Competencies	Contents	Suggested activities
combination of thin		
lenses		
 draw a ray diagram 		
showing how images	are	
formed by lenses use	d in	
a simple microscope	and	
simple telescope		
 compare and contrast 	the	
structure and function	18	
the human eye and		
camera		
• describe how human	eye	
forms an image on th	e	
retina for different ob	oject	
distances		
 identify some defects 	of	
the eye and their		
corrections with lense	es	
• explain what is mean	t by	
the dispersion white o	of	
light to produce a		
spectrum		
• identify that the passa	age	
of a ray of light throu	igh a	
triangular transparent		
prism result in a		
deviation of a ray		

The teacher should assess each students work continuously over the whole unit and compare it with the following description, based on the competencies, to determine whether the student has achieved the minimum required level.

Students at minimum requirement level

A student working at the minimum requirement level will be able to : define and explain the concepts and units related to communications technology (e.g., frequency, period, cycle, wavelength, amplitude, longitudinal and transverse waves, electromagnetic waves, reflection, refraction, total internal reflection, interference, transmission, absorption); describe the characteristics of waves, and analyze, in quantitative terms, the relationships among velocity, frequency, and wavelength to explain the behavior of waves in different media; predict, in qualitative and quantitative terms, the refraction of light as it passes from one medium to another, using Snell's law; explain the conditions required for total internal reflection. using light-ray diagrams, and analyze and describe situations in which these conditions occur; describe and explain, with the aid of light-ray diagrams, the characteristics and positions of the images formed by lenses: describe the effects of converging and diverging lenses on light, and explain why each type of lens is used in specific optical devices; analyze, in quantitative terms, the characteristics and positions of images formed by lenses; demonstrate and illustrate, using light-ray diagrams, the refraction, partial refraction and reflection, critical angle, and total internal reflection of light at the interface of a variety of media; predict, using ray diagrams and algebraic equations, the image position and characteristics of a converging lens.

Students above minimum requirement level

Students working above the minimum requirement level should be praised and their achievements recognized. They should be encouraged to continue working hard and not become complacent.

Students below minimum requirement level