Motion in 2D Unit 1

Section

Learning competencies

1.1 Projectile motion
(page 2)

Define the term projectile (and provide several examples).
Explain the difference between 1D and 2D motion.

e (orrectly use the terms angle of elevation and angle of depression,
and explain the importance of the angle when it comes to
launching projectiles.

e Explain the effect gravity has on the motion of an object.

e Describe what happens to the horizontal and vertical velocities of
a projectile and the important characteristics of its flight.

¢ Demonstrate how to use the equations for uniform acceleration
and to apply these to projectile motion.

¢ Define the term centre of mass.

e (onduct simple experiments to determine the centre of mass of 2D
objects.

List the characteristics of uniform circular motion.
Describe the relationships between radius, mass, forces and
velocity for an object following a circular path.

1.2 Rotational
kinematics
(page 24)

¢ Define the terms angular and tangential displacement, and angular
and tangential velocity.

® Express angles in terms of revolutions, radians and degrees.

e Define the term angular acceleration, and list its key
characteristics.
Identify the SI unit of angular velocity and angular acceleration.
Explain the relationships between angular displacement, tangential
displacement, angular velocity, tangential velocity and angular
acceleration.

® Demonstrate how to use the equations of constant angular
acceleration and compare them with equations of constant
acceleration.

1.3 Rotational
dynamics
(page 30)

e Define the moment of inertia of a point mass.
Define rotational kinetic energy of a body.
Solve simple problems relating to moment of inertia and rotational
kinetic energy.
Define the term torque.
Identify the SI unit of torque, N m, which is not the same as the
joule.

® Express torque in terms of moment of inertia and angular
acceleration.

e Derive an expression for the work done by the torque.

® Use the formula W = 70 to solve problems related to work done by
torque.
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UNIT 1: Motion in 2D

Section Learning competencies
1.3 Rotational ¢ Define the angular momentum of a particle of mass m and write its
dynamics ST unit.
(page 30) e State the law of conservation of angular momentum.
(continued) e Solve problems using the law of conservation of angular
momentum.

State the first and second conditions of equilibrium.

Solve problems related to conditions of equilibrium.

Define the term centre of mass (centre of gravity) of a solid body.
Determine the centre of gravity using a plumb-line method.
Define the terms stable, unstable and neutral equilibrium.

1.4 Newton's law State Newton’s law of universal gravitation.

of universal e Determine the magnitude of the force of attraction between two
gravitation masses separated by a distance r.
(page 40) ¢ (alculate the value of g at any distance above the surface of the
Earth.
e State Kepler's law of planetary motion.
[ J

Use Kepler's law of planetary motion to determine the period of
any planet.

Differentiate between orbital and escape velocity of a satellite.
Determine the period of a satellite around a planet.

Calculate the orbital and escape velocity of a satellite.

Describe the period, position and function of a geostationary
satellite.

You may have already studied motion in one dimension (1D),
including the equation of uniform acceleration. This unit takes
motion further, looking into motion in two dimensions. This
includes projectiles and circular motion.

When you catch a ball your brain is completing a series of complex
calculations relating to the path followed by the ball and the time

it takes to reach you. This is hard-wired into our brains from the
days when we used to hunt and most of our food lived in trees. A
detailed understanding of two-dimensional (2D) motion is essential
for physicists, as it enables them to complete the calculations
required to design objects from complex rockets to roads around
cities.

1.1 Projectile motion

By the end of this section you should be able to:
¢ Define the term projectile (and provide several examples).
® Explain the difference between 1D and 2D motion.

o (orrectly use the terms angle of elevation and angle of
depression, and explain the importance of the angle when
it comes to launching projectiles.
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UNIT 1: Motion in 2D

e Explain the effect gravity has on the motion of an object.

e Describe what happens to the horizontal and vertical
velocities of a projectile and the important characteristics
of its flight.

® Demonstrate how to use the equations for uniform
acceleration and to apply these to projectile motion.

e Define the term centre of mass.

e (onduct simple experiments to determine the centre of
mass of 2D objects.

e |ist the characteristics of uniform circular motion.

e Describe the relationships between radius, mass, forces and
velocity for an object following a circular path.

What are projectiles?
KEY WORDS

A projectile is any object moving through the air without an engine o :

or other motive force. This means is it not restricted to cannonballs | Prejectile any object

or bullets. When you throw a stone, toss a cricket ball, or kick a propelled through space by

soccer ball, they are classed as projectiles as they fly through the air. | the exertion of a force which
\ ceases after launch

velocity the rate of change of
position of a body

vertical velocity

WSLTAV>
NN
R
NN
\ release  horizontal velocity ~ landing
point point

Figure 1.1 Typical example of a projectile.

Projectile motion is more complex than 1D motion. It involves
motion in two directions, the vertical and the horizontal.

For simplicity we look at the horizontal velocity and vertical
velocity as separate components of the velocity. These can be treated AP R
individually. Figure 1.2 Another projectile.
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UNIT 1: Motion in 2D

KEY WORDS

resolving splitting a

vector into vertical and
horizontal components. These
components have the same
effect as the original vector.

Figure 1.4 Accelerating under
gravity.

Spend 30 seconds listing as many projectiles as you can think
of. Compare your list with a partner.

Resolving velocity

Resolving means splitting one vector into two component vectors
(usually one horizontal and one vertical). These components have
the same effect as the original vector.

An example can be seen below. The 60 m/s velocity can be resolved
into two component vectors that have the same effect when
combined:

Figure 1.3 Velocity components are shown in red and blue.

This allows us to calculate the path of the projectile including its
maximum vertical displacement (maximum height), maximum
horizontal displacement (range) and flight time.

Horizontal motion

If we ignore air resistance, then there are no horizontal forces acting
on the projectile as it flies through the air. This means there is no
acceleration, so the velocity stays the same horizontally. This is a
perfectly valid assumption for many projectiles.

We can apply the following equation:

displacement = average velocity x time taken

This becomes:

horizontal displacement = horizontal velocity x flight time

So in order to determine the range of the projectile we would
use the total flight time. For example, to find the horizontal
displacement after 5.0 s we would use a time of 5.0 seconds.

total horizontal displacement = horizontal velocity x total flight time

horizontal displacement after 5.0 s = velocity x 5.0 s
Discussion activity

Under what circumstances might it be inappropriate to assume
the horizontal velocity of a projectile remains constant?
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UNIT 1: Motion in 2D

Vertical motion

The vertical velocity does change. This is because the projectile
accelerates under gravity as it moves.

Figure 1.4 shows a ball falling through the air. The images were
taken at regular time intervals and you can see the displacement
between each shot increases. This is because the ball is moving
faster and faster.

Ignoring air resistance once again, gravity causes all objects to
accelerate at 9.81 m/s’.

Figure 1.5 shows two motion graphs for the falling ball. Looking at
the displacement-time graph it is evident the gradient is increasing.
This is because the object is moving faster as it falls.

This can be seen on the velocity-time graph. A constant gradient
indicates a constant acceleration (in this case, 9.81 m/s?).

The vertical motion of the projectile is an example of uniformly
accelerated motion. This means we can use the equations for
uniform acceleration:

v=u+at
s=%(u+v)t
s=ut+%at2

Vv =u?+ 2as

M .

s=vt-3af

where:

s = displacement

v = final velocity

u = initial velocity

a = acceleration. (in this case, 9.81 m/s?)
t = time

These can be used to determine the time it takes for a projectile to
hit the ground.

Worked example 1.1

Find the time taken for a ball dropped from a height of
6.0 metres:

S u v a t
(m) (m/s) (m/s) | (m/s?) | (s)
6.0 0.0 unknown 9.81 ?

(as dropped)

We don’t know the final velocity so we must use equation 3
(because there is no v in this equation).

Grade 10

DID YOU KNOW?

Due to the shape of the
Earth and its uneven
density, the value of the
acceleration due to gravity
varies slightly. At the
Equator it is 9.78 m/s*
whereas at the North

Pole it is 9.83 m/s%

9.81 m/s” is usually referred
to as Standard Gravity.

A
velocity

y

time

A
displacement

>

time

b

Figure 1.5 Graphs showing the
vertical velocity and displacement
as the ball falls.




UNIT 1: Motion in 2D

DID YOU KNOW?

If we ignore air resistance,
the mass of an object does
not affect the rate at which
it accelerates. Galileo Galilei
was the first to realise this
back in the 17th century. At
the end of the last Apollo 15
moon walk, Commander
David Scott tested this
theory. He dropped a
hammer and a feather at the
same time. As the surface of
the moon is a vacuum, there
was no air resistance and

the feather fell at the same
rate as the hammer.

Figure 1.6 Galileo Galilei.

parabola the curved path a
projectile takes through the
air

s=ut+}at
ut = 0 as the ball was dropped so the equation becomes
s=1at?

This can be rearranged to t = 2%

. [2x60m
"/ 9.81 m/s?

t =1.1 s (to two significant figures)

Drop a ball from several different heights and time how long
it takes to hit the ground. Record your data carefully and take
repeat measurements for each height.

Using the equation, calculate the time it actually takes to hit
the ground. Compare the actual times with your readings and
comment on your findings.

We can also work out the final vertical velocity.

Worked example 1.2

Find the final v ertical velocity for a ball dropped from 6 m.
Looking back at the table we now have:

S u v a t
(m) (m/s) (m/s) (m/s?) (s)
6.0 0.0 unknown 0.81 1.1

(as dropped)

We could use equations 1, 2, 4, or 5 to determine v. However,
equation 4 does not require you to calculate time, so this is
preferable.

v =u®+ 2as

v =(u? + 2as)

v=+(0?+2x9.81 m/s?> x 6.0 m)
v=11m/s (to two significant figures)

How does this affect the motion of projectiles?

When a projectile moves through the air, it follows a path caused by
the combination of its horizontal and vertical velocities. This path is
curved; it forms a special type of curve called a parabola.
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UNIT 1: Motion in 2D

a b
Figure 1.7 Diagrams of paths of balls.

Figure 1.9 shows a real example of this type of motion. Here one
child throws a ball to another. A camera took photos at regular time
intervals. If you look carefully, you can see the ball’s vertical velocity
increases as it falls and decreases as it rises.

Notice:

* Horizontally, the ball moves at a steady speed. 'The images of
each ball are equally spaced horizontally.

* Vertically, the ball accelerates downwards due to gravity. This
means the images become further and further apart. Figure 1.8 A parabola.

Next time you are outside,
get two friends to throw a
ball to each other. Stand

at the side (some distance
away) and watch the path
of the ball carefully. Try
asking your friends to throw
the ball at different angles.
What do you notice?

Figure 1.9 A multi-flash image showing the motion of a projectile
(a ball).

Horizontal and vertical velocities

This special shape is caused by the relationship between the
horizontal and vertical velocities.

Grade 10




UNIT 1: Motion in 2D

.

L4,
;

o

Figure 1.10 Horizontal and vertical velocities.

If you look carefully at Figure 1.10 you can see the horizontal
velocity remains the same but the vertical velocity increases. This
causes the ball to follow a parabolic path.

The same is true for a projectile thrown at an angle.

v

Figure 1.11 Horizontal and vertical velocities for a projectile thrown
at an angle.

Figure 1.11 shows the velocities for a ball thrown at an angle. Again
the horizontal velocity remains constant. The vertical velocity first
decreases (on the way up), reaches zero (at the top of the flight), and
then increases on the way down. The vertical velocity at any point is
given by the equation v = u + at.

You need to think carefully about the directions of the vertical
velocities and the acceleration. If we use a as 9.81 m/s? then the
initial vertical velocity must be a negative number as it is in the
opposite direction. We have effectively decided that downwards is
the positive direction.

9.81 m/s? 12 m/s (so therefore: -12 m/s)

Figure 1.12 The importance of direction when dealing with vectors.
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UNIT 1: Motion in 2D

This works the other way around, too. It does not matter which
way is positive and which way is negative, but you must not mix
them up!

Worked example 1.3

An arrow is fired vertically with an initial velocity of 35 m/s.
Find its velocity after:

a)3s
b) 6s
Using the table layout seen earlier we get:
s u v a t
(m) (m/s) (m/s) | (m/s%) (s)
Unknown -35 g 9.81 a) 3
b) 6

Notice we have entered -35 m/s for the initial velocity. We are
therefore setting the downwards direction as positive.

a)

vV=u+at

v=-35m/s +(9.81m/s? x 3 s)

v =-5.6 m/s (to 2 significant figures)

Notice the velocity is still negative as it is still travelling
upwards.

b)

vV=u+at

v=-35m/s + (9.81m/s? x 6 s)

v =24 m/s (to 2 significant figures)

Notice the velocity is now positive. This must mean the arrow
has changed direction and is heading back down.

Horizontal projection

Projectiles may be initially travelling horizontally. This might
include a ball kicked off a wall, a bullet fired from a horizontal
gun, or a parcel dropped from the underside of an aircraft flying
horizontally.

The object will follow the path shown in Figure 1.13. It is interesting
to note that the time it takes to hit the floor only depends on the
original height of the object.

The flight time is given by the equation s = uf + 3af. Looking at this
vertically, ut = 0 as the ball initially has no vertical velocity. So the
equation becomes s = 3af* and the time it takes to hit the floor is
given by:

t= |28
a

Grade 10

Calculate the height of the
arrow in each case for the
worked example.

Figure 1.13 Horizontal
projection.




UNIT 1: Motion in 2D

The acceleration is constant (9.81 m/s?) and so the only factor
affecting the time to hit the floor is the drop height.

From this we can draw some counterintuitive conclusions: imagine
someone holding a rifle in their right hand and a rifle bullet in their
left hand. The rifle is perfectly horizontal. The rifle is then fired and
the bullet is dropped at exactly the same time. Which bullet will hit
the ground first?

It would be tempting to say the bullet from the rifle takes longer to
hit the ground than the one dropped from the hand. However, this
would be wrong! They both hit the ground at the same time; the
only difference is the bullet from the rifle hits the ground several
metres-away whereas the dropped bullet hits the ground by the
personss feet.

Figure 1.14 shows atime lapse of two balls: one dropped, the other
fired horizontally. Both were released simultaneously. You can
clearly see they stay at exactly the same height as they fall.

Figure 1.14 Time lapse of two balls falling.
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UNIT 1: Motion in 2D

Activity 1.5: Test with ruler and two coins

You can test this using a ruler and two coins. Carefully place the ¢ . e

ruler on the edge of a desk. Place one coin on the end of the \

ruler overhanging the desk. Place the other next to the ruler as

shown. The aim is to flick the ruler so that the first coin falls

vertically where as the second coin gets pushed off the desk N

horizontally. Figure 1.15 Cannonballs fired
~ horizontally with different

velocities.
Desk f

N

Figure 1.16 Ruler and coin experiment.
You have to flick it quite hard.

When you do so, listen for the clink as the coins hit the floor.
You will find the two clinks come at once; both coins hit the
floor at the same time.

Activity 1.6: Rolling a ball down a track

A more complex experiment involves rolling a ball or marble
down a track. As you vary the release height, you vary the
horizontal velocity of the marble. You could time the time it
takes to hit the ground for different release heights.

You must be careful to start timing when the ball leaves the
desk.

Curved track

Marble or ball-bearing

Marble leaves track moving horizontally

Sand tray

Horizontal distance travelled

Figure 1.17 A marble rolling down a track.
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UNIT 1: Motion in 2D

Worked example 1.4 As discussed earlier, the range of any projectile is given by:

. horizontal displacement = horizontal velocity (v, ) x flight time
A football is kicked off a

wall at an initial horizontal S /ﬁ
velocity of 12 m/s. The wall ~ The flight time is given by: 1=/ "4
is 2.1 m high. Find the time Combining these we get:

taken for the ball to hit the oF
floor and the range of the horizontal displacement = v, x %,
ball.

2 vertical height
acceleration

horizontal displacement = v, x /
S u v a t

(m) | (m/s) | (m/s) | (m/sY| () | Thisonly applies to projectiles initially travelling horizontally.
2.1(12 |? 9.81 |?

_ |2
t=Ja Use the equations above to complete the table below. Use this
% 71 data and a piece of graph paper to carefully plot the trajectory
t= {ggl—m/:: of a ball thrown horizontally with a velocity of 2.0 m/s.
Time (s) | Vertical displacement | Horizontal
t=0.65s y (m) displacement x (m)
horizontal displacement = o
horizontal velocity x flight :
time 2.0
horizontal displacement 3.0
=12 m/s x 0.65 s 4.0
horizontal displacement 5.0

=7.8m

Using the same equipment as for Activity 1.6, roll the marble
down the track. This time, measure the range of the marble
when released from several different heights up the ramp. Be
sure to repeat your readings for each height.

Plot a graph of your findings and use your data to calculate
the initial velocity in each case.

Curved track

Marble or ball-bearing

Sand tray

Horizontal distance travelled

Figure 1.18 A marble rolling down a track.
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UNIT 1: Motion in 2D

Projectiles at angles

Projectiles may also be travelling at angles to the horizontal. In this
case their initial vertical velocity is not zero. In order to find the
initial horizontal and initial vertical velocity, the velocity must be
resolved into horizontal and vertical components.

For example, a ball kicked with a velocity of 9.0 m/s at an-angle of
50° to the horizontal:

To find the components, we use trigonometry.

* initial vertical component = 9.0 m/s x sin 50°

* initial vertical component = 6.9 m/s

* initial horizontal component = 9.0 m/s'x cos 50°

* initial horizontal component = 5.8 m/s (remember this'will not
change throughout the flight of the projectile).

If the angle of the projectile is above the horizontal, then this is
referred to as an angle of elevation (Figure 1.20a). However, if the
angle of the projectile is below the horizontal then this is referred to
as an angle of depression (Figure 1.20b).

Using the initial vertical velocity, the initial horizontal velocity and
the equations of uniform acceleration we can then determine the
range, flight time and maximum height of the projectile.

Maximum height

At the maximum height the vertical velocity of the projectile will be
zero. Using the example in Figure 1:19 (9.0 m/s at 50°) we can use
the equations of uniform acceleration as follows:

S u v a t
(m) (m/s) (m/s) (m/s?) (s)
?? usin 6 At max 0.81 unknown
in this height:
case: 0
-6.9

Again, take care to ensure you consider the directions of the
velocities; in this case, downwards is positive.

To find the maximum height we use v* = u* + 2as
(as we don’t know ¢1):
v2=u’+ 2as
v -u?
s=
2a
(02 - (-6.9> m/s?)
2x9.81 m/s*

S =

=-2.4m.

The height is of course 2.4 m, the negative just indicates that it is in
the opposite direction to the acceleration.

Grade 10

Figure 1.19 Ball kicked at an
angle.

KEY WORDS

angle of elevation the angle
of a projectile’s trajectory
above the horizontal

angle of depression the
angle of a projectile’s
trajectory below the horizontal

a Angle of elevation

I
I
I
I
I
I
I
:
b Angle of depression

Figure 1.20 Angle of elevation
and angle of depression.




UNIT 1: Motion in 2D

We can then work out the time taken to reach maximum height
using v = u + at.

v=u-+at
t= v-u
a
_0--69m/s
9.81 m/s?
t=0.70s

Projectile range

If the'projectile is launched from the ground, the total range will be

given by:

¢ Total horizontal displacement = horizontal velocity x total flight
time

The horizontal velocity remains the same throughout the flight and

is given by u cos 0 (in the previous example, 5.8 m/s). All we need
to find the range is total flight time.

This can be done in a number of ways; perhaps the simplest is to
use v = u + at. The final vertical velocity will be the same magnitude
as the initial vertical velocity, just in the opposite direction (look at
Figure 1.11 to check).

Using the same example as before we get:

S u v a t
(m) (m/s) (m/s) (m/s?) (s)
7 u sin 8in 6.9 9.81 unknown
this case:
-6.9

Again, take care to ensure you consider the directions of the

velocities; in this case downwards is positive. Notice the final
velocity is the same magnitude as the initial velocity, just the
opposite direction (hence positive and not negative).

We can then work out the time taken to reach maximum height
using v = u + at.

v=u+at
p=y-u
a
f=6.9m/s - -6.9m/s
9.81 m/s?
t=14s

The total flight time is just double the time to reach maximum
height!
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So the range of the football is:

Total horizontal displacement = horizontal velocity x total flight :
time In a small group, discuss why

2 o 2 o
Total horizontal displacement = 5.8 m/s x 1.4 s 2u? sin 8 x cos 0 _uem 26

Total horizontal displacement = 8.1 m a a

Alternatively, you can use algebra to combine the equation above,
the horizontal and vertical components of the velocity, and the
equations of uniform motion. This gives an expression for the range

as:
X 2u sin
range—”cose u sin 6
a
or
2u*sin 0 x cos 8 = u?sin 20
range =

a a

This is usually called the range equation.

Worked example 1.5

Find the range of a projectile launched at an angle of 50° with
an initial velocity of 30 m/s.

range u a 0 20 sin 260
(m) | (m/s) | (m/s*) | (°) (°)
Z 30 9.81 50° 100° 0.9848
u? sin 20
Use range = ———
30 x 30 x 0.9848 . -
range = range equation an algebraic
9.81 .
expression to calculate the
=90.35m range of a projectile
Flight time

You can also derive an equation for the total flight time for a
projectile fired at an angle. This is just a version of s = vt — 3 af?
(equation 5 in our list of equations for constant acceleration).

At the end of the flight the vertical displacement will be 0 m, as the
object will be back on the ground. The final vertical velocity will
be given by u sin 0, as the object ends up with the same vertical
velocity as it started, just in the opposite direction. So:

1
s=vt—73at?

Oz(usinﬂ)t—%at2
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/-

Figure 1.21 An illustration of the
effect of angle on range.

Rearranging this we get:
yatt=(usin0)t

% at=usin 6
at=2usin @

_2usin 0
a

Worked example 1.6

Find the flight time for a cannonball launched with a velocity
of 60 m/s at an angle of 30°.

t

t u 0 sin 0 a
(s) (m/s) (°) (©) (m/s?)
? 60 30 0.5 9.81
. 2u sin 0
a
. 2 X 60 sin 30
9.81
t=6.1s

Its range would be:

2u? sin 6 x cos 6

Range = 7
_
Range=2><60 sin 30 X cos 30
9.81
Range =320 m

Remember that all of these equations ignore air resistance. The
equations become exceptionally complex when this is factored in,
especially since the air resistance changes as the velocity changes.

Maximum range
The angle of a projectile affects its maximum range.

Figure 1.21 shows different paths of a projectile fired at different
angles. The maximum range is achieved when the angle is 45°. This
can be explained be referring back to the range equation:

2u?sin O x cos 8
a

Range =

The maximum value of sin 6 x cos 8 is 0.5 and this happens when 8
is 45°. This gives us:
2u* 0.5
a

maximum range =

2
. u
maximum range = —
a

Grade 10



UNIT 1: Motion in 2D

To determine the range of projectiles launched above the
ground you need to use algebra to derive a new equation.
The range is given by:
Use the range equation to

Range = (u cos §) x (u sin 0 +V((u sin 0)* + 2ah) determine the range of a cannonball

a fired with a velocity of 50 m/s when
fired at a series of different angles.
Use 15°, 30°, 45°, 60° and 75°. Plot
a graph of range against angle and
comment on your findings.

Worked example 1.7

Use this equation to determine the range of the ball in Figure 1.22.

where h is the height above the ground. Even this equation
ignores air resistance!

u 0 cos 0 sin 0 a h range
(m/s) | (°) (°) (m/s?) | (m) (m)
36 39 0.7771 0.6293 9.81 1.6 ?

Velocity = 36m /s
/

'K_\\
Level of throwing P

1;1.6m

Ground ,

Figure 1.22 Throwing a soccer ball.

(u cos 6) x (u sin 8) + v ((u sin 6)2+ 2ah)
a
(36 X 0.7771) X (36 x 0.6293) + V ((36 X 0.6293)%+ 2 X 9.81 X 1.6)
- 9.81

Use range =

27.9756 x (22.6548) +  ((22.6548)? + 31.392)
- 9.81

27.9756 x (22.6548) + \ (513.24) + 31.392)
- 9.81

27.9756 x (22.6548) + V (544.632))
- 9.81

27.9756 x (22.6548) + V (544.632))
- 9.81

27.9756 x (22.6548) + (23.3374)
- 9.81

27.9756 x 45.9922 1286.66
= = =131.16 m
9.81 9.81

Grade 10
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centre of mass the point
at which all the mass of an
object may be considered to
be concentrated

AO

Figure 1.23 Examples of the
centre of mass for difference
uniform shapes.

)
~_

NSNS

Figure 1.24 The centre of mass
for different uniform 3D objects is
in the centre of the object.

Centre of mass

All objects have a centre of mass. This is the point at which all the
mass of the object may be considered to be concentrated.

For uniform objects the centre of mass will be at the intersection of
all the lines of symmetry; in essence the centre of the object.

This is also true of 3D objects.

Another way to define the centre of mass is: the point through
which a single force on a body has no turning effect.

Take a ruler and balance it on your finger. When balanced,
the centre of mass must be above your finger. Take several
other objects and balance them on your finger to find the
approximate position of the centre of mass. Try it with a few
more irregularly shaped objects.

This idea of balancing an object so there is no net turning effect
leads onto the centre of mass theorem. This is a mathematical
treatment of the distribution of mass, which is beyond the scope
of this course.

The centre of mass theorem
The centre of mass theorem simply states:

* when a force is applied to an object, the object acts as though its
mass were a point mass at its centre of mass.

This means that the motion of the centre of mass of a system is
identical to the motion of a single particle with the same mass as the
system if such a particle were acted on by the same external forces.

Work in a small group. You need a 2 m plank with four low
friction wheels (for example, roller bearings).

e Mark the middle of the plank as shown -
in the diagram (this is the centre of mass),
on the plank and on the floor beneath.

—
~

¢ One person should stand at the middle of the plank and
walk four steps.

e Mark the position where the student finishes on the plank
and on the floor.

e Record the distance that the centre of mass has moved.

e Use your knowledge of motion to analyse the motion of the
centre of mass.

The centre of mass where two or more celestial bodies orbit each
other is known as the barycentre. This is the point between the
bodies where they balance each other. The Moon does not orbit
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the exact centre of the Earth, but their masses balance at a point
approximately 1710 km below the surface of the Earch on a line
between the Earth and the Moon.

Experimental determination of centre of mass

It is quite difficult to accurately determine the centre of mass for a
3D object. Special machines called planimeters are used. However,
it is quite simple to determine the mass of a 2D object.

1. Take a piece of thick card and cut it into any shape you like
(this example involves using a piece shaped like a jigsaw
piece).

2. Make a series of small holes around the edge of the shape.

3. Hang it from one of these holes so the object is free to
rotate.

4. Construct a simple plumb line using some wire (or string)
and a mass.

5. Hang this from the support so it hangs vertically down.

6. Using a sharp pencil, draw a line to show the position of
the plumb line.

7. Repeat this procedure for all the holes you have made,
making a series of straight lines on your shape.

8. The lines should all cross; this is the centre of mass of the
object. (You can test this by balancing the shape on the
sharp pencil.)

The centre of mass of a system does not have to be an object. Take,
for example, a cup. The centre of mass will be inside the cup even
though there is nothing there but air. A more complex example
might be two binary stars; these orbit the centre of mass between
the two stars.

Uniform circular motion

Anotherexample of 2D motion is uniform circular motion. This
does not just refer to objects spinning around in circles, but also to
objects following a curved path that is the shape of part of a circle,
such as a car going around a bend of constant radius.

¢ Uniform circular motion specifically refers to following a curved
path of constant radius at a steady speed.

In this case, despite the speed remaining constant, the velocity is
constantly changing. This is because velocity is a vector quantity, so
as the object moves around the circle its direction is changing, and
therefore its velocity must be changing. This can be seen in Figure
1.27, where the velocity has changed between points A and B.

Grade 10

DID YOU KNOW?

The terms centre of gravity
and centre of mass are often
confused. There is a slight
technical difference, but
this is only apparent if the
object is in a non-uniform
gravitational field.

hole

_—plumb line

Figure 1.25 Determining the
centre of mass of a 2D object.

Centre of mass

Figure 1.26 Centre of mass of two
binary stars.

uniform circular motion the
motion of a body following a
curved path of constant radius
at constant speed

—vp

Figure 1.27 The changing velocity

for an object moving in a

circular path.
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centripetal force the net
force needed to make a body
follow a circular path

As the velocity is changing, the object must be accelerating
(acceleration is defined as the rate of change of velocity). According
to Newton’s second law, acceleration requires a net force and the
direction of the acceleration is the same direction as the net force.

Projectile motion is not an example of uniform circular motion. As
the path is a parabola, the radius is constantly changing.

Figure 1.28 shows the direction of the net force required to keep
an object following a circular path. This force is referred to as the
centripetal force and it always acts towards the centre of the circle.

What factors affect the size of the centripetal
force?

The mass of the object, its velocity, and the radius of the curved
path followed by the object affect the centripetal force.

Make a simple pendulum using a mass and a piece of string.
Carefully swing this around your head in a horizontal circle,
trying to keep the speed constant.

The force required to make the mass move and follow a circular
path will come from your hand. You will be able to feel the
force required. Experiment by changing the mass, radius and
velocity of the object. How does this affect the force required?

To calculate the centripetal force we use the equation below:

F:mﬁ
-
where F = centripetal force, m = mass of the object,

v = velocity of the object, and r = radius of the curved path.

Worked example 1.8

The mass of the Earth is 6.0 x 10% kg. It travels at a steady
speed around the Sun at 30 000 m/s at a radius of 1.5 x 10° m.
Find the force required to keep it in orbit.

F m v r
(N) (kg) (m/s) (m)
? 6 x 102 30 000 1.5 x 10°

_ 6.0 x 10 kg x 30 000 m/s?
1.5 x 10 m

F=3.6 x 10*N

F

Grade 10
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Circular motion examples

There are plenty of examples of circular motion. In each case
the centripetal force acts towards the centre of the circular path

followed by the object.

Table 1.1 Examples of centripetal forces.

Context

Centripetal force

Direction of the
force

The Earth orbiting | Gravitational Towards the centre

the Sun attraction of the circular path:
towards the centre
of the Sun

An electron orbiting | Electrostatic Towards the centre

an atom attraction of the circular path:

towards the centre
of the nucleus

A ball on a string
being whirled
around

Tension in the string

Towards the centre

of the circular path:

towards the centre
of the circle

A car going around
a bend

Friction

Towards the centre

of the circular path:

towards the centre
of the bend

A bus going over a
hump-backed bridge

A component of
weight

Towards the centre

of the circular path:

towards the centre
of the bridge

What if the centripetal forces are not large enough?

There is a maximum centripetal force that can be provided. For

example, if the tension gets too high, the string will snap. Likewise,

if the friction is not high enough the car may skid or slide.

Imagine the maximum frictional force between the road and the
tyres of a certain car is 6500 N. The mass of the car is 1200 kg and
the bend has a radius of 85 m. Determine the maximum speed at
which the car can take the bend.

=
r
1/22ﬂ
m
Fr
y=[ ——
m
(6500 N x 85 m
‘V:
v 1200kg
y=21m/s
Grade 10

N

Figure 1.28 Forces acting on a
hammer thrower.

Worked example 1.9

A hammer thrower swings a
hammer around his head at
a steady speed of 2.0 m/s at
a radius of 1.2 m. He exerts
a constant force of 120 N,
Calculate the mass of the
hammer.

F m v r
(N) | (kg) | (m/s) | (m)
120 ? 2.0 1.2

Fomv
r
Fr=mv?

_fr

=

_120Nx1.2m

2 m/s?
m = 36 kg

Discussion activity

Look carefully at the centri-
petal force equation. What
effect does changing each of
the variables have on the force
required? For example, what
would happen to the required
force if the mass doubled?
What would happen if the

velocity doubled?
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If the car travels faster than this, friction will not be large enough
to provide the required centripetal force. The car will then follow a
path of increased radius, and skid towards the edge of the road.

In this section you have learnt:

® A projectile is any object moving through the air without an
engine or other motive force; examples include tennis balls
and rifle bullets.

® Projectile motion and uniform circular motion are examples
of 2D motion.

® Gravity causes projectiles to follow a parabolic path; this is
because the horizontal velocity remains the same but the
vertical velocity increases.

¢ The angle of a projectile affects its flight path and therefore
its range and the time in the air.

¢ The equations for uniform acceleration can be applied to
projectile motion.

e (entre of mass is the point at which all the mass of the
object may be considered to be concentrated.

e Uniform circular motion is when an object travels at a steady
speed around a circular path.

Review questions

1. This question is about a simple model of the physics of the
long jump. Figure 1.29 shows a long-jumper at three different
stages, A, B and C, during the jump. The horizontal and vertical
components of velocity at each position are shown.

v, =3.5m/s v, =0m/s vy =10 m/s
—_—
vy =10m/s
vy=3.5 m/s
v, =10m/s

Length of jump

Figure 1.29

a) i) Inthe model, the horizontal component of velocity v,
is constant at 10 m/s throughout the jump. State the
assumption that has been made in the model.

H Grade 10
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ii) Without calculation, explain why the vertical
component of velocity v,, changes from 3.5 m/s at A to
0 m/s at B.

b) i) By considering only the vertical motion, show that it
takes about 0.4 s for the jumper to reach maximum
height at B after taking off from A. Take g =9.8 m/s’.

ii) Calculate the length in metres of the jump.

c) Long-jumpers can use this model to help them to improve
their performance. Explain why the length of the jump
can be increased by:

i) increasing the horizontal component of velocity v, ,
keeping v,, the same.

ii) increasing the vertical component of velocity v,,
keeping v , the same.

2. Define the term centre of mass.

3. Describe in as much detail as you can the motion of a projectile
fired at an angle (include descriptions of the vertical and
horizontal components of velocity).

4. A football is kicked at a velocity of 15:m/s at an angle of
25° to the horizontal. Calculate:

a) the total flight time
b) the maximum height
c) the range ofthe ball.

5. A caraccidently rolls off a cliff. As it leaves the cliff it has
a horizental velocity of 13 m/s, it hits the ground 60 m from the
shoreline. Calculate the height of the cliff.

6. A car of mass 1200 kg travels at a steady speed of 22 m/s around
a bend of radius 50 m. Find the centripetal force required.

7. Find out what is meant by the centre of stability of a ship. Why
is it important that the centre of mass of a ship is below the
centre of stability?

8. A tennis ball machine fires a ball vertically upwards at time
t=04at 19.6 m/s. Assume that air resistance is negligible and
take g= 9.8 m/s%.

a) ".Calculate the displacement and velocity of the ball at
t=1.0s,2.0s,3.0sand 4.0s.

b) Use your answers to part a) to draw
i) agraph of displacement against time for the ball
ii) a graph of velocity against time for the ball.

Grade 10 H
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Figure 1.30 Example of circular
motion.

Figure 1.31 Angular displacement.

DID YOU KNOW?

Having 360° in a circle

is convenient because it
divides easily into a whole
a number. It divides by 1, 2,
3,4,5,6,8,9,10, 12, 15, 18,
20, 24, 30, 36, 40, 45, 60, 72,
90, 120, 180, and 360!

Discussion activity

Why are there 360° in a circle?
Discuss some possible reasons
with a partner.

1.2 Rotational kinematics

By the end of this section you should be able to:

e Define the terms angular and tangential displacement, and
angular and tangential velocity.

® Express angles in terms of revolutions, radians and degrees.

e Define the term angular acceleration, and list its key
characteristics.

e Identify the SI unit of angular velocity and angular
acceleration.

¢ Explain the relationships between angular displacement,
tangential displacement, angular velocity, tangential
velocity, angular acceleration and tangential velocity.

¢ Demonstrate how to use the equations of constant angular
acceleration and compare them with equations of constant
acceleration.

Rotational motion

Whenever objects travel in curved paths their motion can be
considered to be rotational. A simple example might be a ball on
a’piece of string being swung around in a circular path. A more
complex example might include the orbit of the planets around
the Sun.

Up until this point, whenever we have used the terms displacement,
velocity and acceleration this has always applied to a straight line.
We now need to consider the motion of objects following curved
paths. Let’s take an example of an object travelling in a perfect circle.

As discussed earlier, this object is accelerating (it is changing
direction, therefore changing velocity, therefore accelerating).
However, what if the object was also getting faster? We need to
be able to distinguish between its displacement, velocity and
acceleration, and whether it is angular or tangential.

Displacement

In one complete revolution an object will travel a distance equal to
2nr (where r is the radius of the circle). Its tangential displacement
will be zero as it is back where it started. If we consider part of

this motion, between two points, we can see that the object has an
angular displacement equal to 6. This is just the angle the object has
subtended.

When describing angular displacement, there are several different
units of angular measurement we could use. Perhaps the simplest
would be revolutions. Half a circle would be 0.5 revolutions (or 0.5
rev), two complete loops would be 2 revolutions. However, this does
not have much scientific merit. A more common unit is the degree.

Grade 10
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One revolution is 360°, half a circle would be 180°, and so on.

For scientific and mathematical calculations the radian is used. This
has a clear mathematical basis and offers a number of advantages
(especially when dealing with high level trigonometry). One radian
is the angle subtended at the centre of a circle by an arc that is equal
in length to the radius of the circle.

This definition means that there must be 2n radians in a circle. This
is because the circumference of a circle is given by 2nr and so the
radius fits around a complete circle 21t times. This could be written
as 6.28 rad, but it is usually just written as 2n rad.-Half a circle
would be 1t rad (or 3.14 rad).

One radian is equal to i{ﬂ (or % ) degrees, or about 57.3°.
Table 1.2 Examples of angular measurements
Revolutions Degrees Radians
1
s 45 i
1 n
4 90 2
2 180 m
3
: 270 — o
1 360 2m
2 720 4m
Velocity

Angular velocity is defined as the rate of change of the angle
subtended. This is very similar to the definition of linear velocity
(rate of change of displacement). The faster an object rotates, the
greater the angle covered per unit of time. This leads us to the

relationship:
angle covered

average angular velocity = —-

In symbols:
0
w=7

w is the Greek letter omega. As 0 is measured in radians and ¢ in
seconds, the units of angular velocity are therefore rad/s.

In one complete revolution 0 is equal to 2rt radians and ¢ becomes T'
(time for one complete cycle).

So for one complete cycle:
6 2n
W=r=T

This allows us to work out angular velocities if we know the time
taken for one cycle.

Grade 10

arc length=radius

1 radian

| radius

Figure 1.32 The radian.

Thinking about an analogue
clock, calculate the angular
displacement in revolutions,
radians and degrees for the

following:

e A second hand after three
minutes

® An hour hand after 20
minutes

® The minute hand as
it moves from 9.15 to
12.45.

KEY WORDS

radian the angle between two
radii of a circle that cut off,
on the circumference, an arc
equal in length to the radius

angular velocity specifies the
angular speed of an object
and the axis about which the
object is rotating
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Other units of angular
velocity could be degrees
per second or even rpm
(revolutions per minute).
What would an angular
velocity of 3m rad/s be in
degrees per second and rpm?

Figure 1.33 Angular and
tangential velocity.

Figure 1.34 Two stones on a
spinning disk.

acceleration the rate of
change of velocity as a
function of time

Worked example 1.10

The Earth takes approximately 365 days to 0 T
orbit the Sun. Calculate its average angular on ? ?
velocity.

First we must find the time taken for one orbit in seconds
365 days = 365 x 24 x 60 x 60 =3.2 x 10’ s

_0_2m
a)_t_ T
_2n 2
=32 x 10

=2.0x 107 rad/s

As the object follows a circular path it also has a tangential velocity
atany given point (see Figure 1.33).

Angular and tangential velocity may be linked using the equation
below:

tangential velocity = radius of path X angular velocity
v=ro

Using the Earth as an example, its tangential velocity at any one
point may be calculated:

V'=rw
y=15x%x10"x2.0x 1077
vy =30 000 m/s

Thinking about this equation further leads us to the conclusion that
for any given angular velocity the tangential velocity is proportional
to the radius.

Imagine two stones on a spinning disk (see Figure 1.34).

Both stones have the same angular velocity as they both cover the
same angle in the same time. However, the stone nearer the edge
has a higher speed (as it covers a greater distance in the same time)
and so a greater tangential velocity.

Another way to think about uniform circular motion is to define
it as any motion where both the speed and the angular velocity are
constant.

Acceleration

As discussed in the previous section, any object travelling in a
circular path is accelerating. This acceleration is called centripetal
acceleration and it acts towards the centre of the circle.

Centripetal acceleration is given by the equation:

tangential velocity”

Centripetal acceleration = ~=—¢
radius of curvature

a=

Grade 10
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Since v = rw this equation could be written as:

r2w2
a=
-
a=rw

Again using the Earth as an example, its centripetal acceleration
may be found using the following technique:

a=rw
a=15x10"x (2.0 x 107)?
a=6.0x103m/s?

Using the data in the table below, calculate the angular
velocity, tangential velocity and centripetal acceleration for
each of the planets listed.

Planet Orbital period Average distance
(days) from Sun(m)

Mercury 88 5.8 x 10%°

Venus 225 1.1 x 10"

Mars 686 2.3 x 10"

Jupiter 4330 7.8 x 10"

Neptune 60 000 4.5 x 10%

If the mass of an object remains constant, then applying Newton’s
second law of motion gives us:

DID YOU KNOW?

Tangential and angular
acceleration are related in
the same way as tangential
velocity and angular
velocity. Instead of v =r@
we geta, =ra.

F=ma.

For centripetal azcceleration and so centripetal force this equation
becomes F = @

In the examples we have looked at so far, the object moving in a
circular path has been travelling at constant speed. What if the
object is:also getting faster as it rotates? An example might be a car
getting faster as it goes around a bend. In this case its tangential
velocity is increasing, and as a result it has a tangential acceleration.
The magnitude of this acceleration is given by:

change in tangential velocity

Discussion activity

tangential acceleration = Under what circumstances is

time taken it possible to have a constant
a,= Av. centripetal acceleration
t but also be accelerating

In most cases an increase in tangential velocity will lead to an tangentially?

increase of both tangential and centripetal acceleration.

If the radius remains constant, an increase in tangential velocity
will also cause an increase in angular velocity. Changes in angular
velocity are as common as changes in linear velocity. Just think
about a CD spinning up or the wheels of a car as it accelerates.

Grade 10
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tangential
acceleration

centripetal
acceleration

angular
acceleration

Figure 1.35 Different accelerations

in rotational motion.

Worked example 1.11

Find the final angular
velocity when the initial
angular velocity is 2 rad/s,
the angular acceleration is
3 rad/s? and the time of
motion is 4 s.

0 w, a t
(rad/s) | (rad/s) | (rad/s?) | (s)
Z 2 3 4

Use w = w,+ at

Substitute in given values to
get:

w=2+3x%x4
= 14 rad/s

Angular acceleration is defined in a very similar way to linear

acceleration:
change in angular velocity

time taken

angular acceleration =
o = Bw
ot

« is the Greek letter alpha. As w is measured in rad/s and ¢ in
seconds, the units of angular acceleration are therefore rad/s”

This means that for an object travelling with rotational motion there
may be three different types of acceleration.

The equations of constant angular acceleration

You.saw on page 5 that there are equations that can be used when
there is constant linear acceleration. There is an equivalent set of
equations for constant angular acceleration.

Here are the two sets of equations side by side for comparison.

Constant linear acceleration | Constant angular acceleration
v=u+at w=w+at

s=3(u+V)t 0=%(w0+ w)t

s=ut+ %at2 0= w;t + %oa‘2

Vi =u? + 2as w’ = w?+ 2a6

s=vt-3at 0 = wt - 3at?

w = final angular velocity
w, = initial angular velocity
a = angular acceleration
t=time

0 = angular distance

Worked example 1.12 Worked example 1.13

Find the distance travelled when the final
angular velocity is 14 rad/s, the angular
acceleration is 3 rad/s? and the

Find the distance travelled when the initial
angular velocity is 2 rad/s, the final angular
velocity is 14 rad/s, and the time of motion is

time of motion is 4 s. 4 s.
0 w t b4 0 w, w t
(rad) | (rad/s) | (s) | (rad/s?) (rad) | (rad/s) | (rad/s) | (s)
? 14 4 3 ? 2 14 4

Use 0 = wt - %at‘2

Substitute in given values to get:
=14 x4-7X3X4=56-24=32rad

Use 0 = Y2(w, + w)t
Substitute in given values to get:
0 =12(2+14) X 4 =1 x 16 X 4 = 32 rad

Grade 10
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e Angular displacement is the distance an object travels on o A
a circular path and is often measured in radians. Tangential Oradians
displacement is the distance an object moves in a straight
line. Thus, an object that moves round a complete circle will
have an angular displacement of 2m radians but a tangential Eive1. 36
displacement of 0 m (see Figure 1.36). 8

¢ Angular velocity is the angular displacement in a given
unit of time. It is often measured in radians per second.
Tangential velocity is the linear distance moved in a given
unit of time and is often measured in metres per second.

T radian

® You can express angles in terms of revolutions, radians and
degrees. For example, 1 revolution is the same as 2m radians
or 360° (see Figure 1.37).

e Angular acceleration is the change in angular velocity per
unit time. It is angular acceleration that contributes to the
centripetal force which enables objects to move in circular

. g 2
paths. It is often measured in rad/s. Figure 1.37

¢ Tangential displacement and angular displacement are
related by the equation:

tangential displacement = radius of path x angular
displacement

¢ Tangential velocity and angular velocity are related by the
equation

tangential velocity = radius of path x angular velocity
¢ Angular acceleration and angular velocity are related by the
equation:

angular velocity

angular acceleration = -
time

¢ The equations of motion with constant angular acceleration
are related to the equations of motion with constant linear
acceleration as shown in the table on page 28.

Review questions

1. a) Define angular displacement and gives its units.

b) Define tangential displacement and give its units.

c) Explain why an object that moves round a complete circle
will have an angular displacement of 2 radians but a
tangential displacement of 0 m.

2. a) Define angular velocity and give its units.
b) Define tangential velocity and give its units.

c) Find the tangential velocity of an object moving in a path of
radius 2 m with an angular velocity of 3 rad/s.

Grade 10 ﬂ
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3. a) Give the three ways of expressing angles.

b) Express the angle shown in Figure 1.38 in three different
ways.

4. a) Define angular acceleration and give its units.

b) How does angular acceleration enable objects to move in
circular paths?

5. a) State the'equations of motion with constant angular
acceleration.

Figure 1.38 b) Find the final angular velocity when the initial angular
velocity is 5 rad/s, the angular acceleration is 2 rad/s and
the time of motion is 10 s.

¢) Find the distance travelled when the final angular velocity
is 20 rad/s, the angular acceleration is 2 rad/s and the time
of motionis5 s.

6. A satelliteis in orbit 35600 km above the surface of the Earth.
Its angular velocity is 7.27 x 10° rad/s. What is the velocity of
the satellite? (The radius of the Earth is 6400 km.)

7. Astronauts in training are subjected to extreme acceleration
forces by the centripetal forces in a giant centrifuge. The radius
of the centrifuge is approximately 5 m.

a) Calculate the approximate centripetal force on an astronaut
of mass 80 kg if the centrifuge rotates once every 2 s.

b) Approximately how many times greater than the astronauts
weight is this force?

1.3 Rotational dynamics

By the end of this section you should be able to:
e Define the moment of inertia of a point mass.
e Define rotational kinetic energy of a body.

e Solve simple problems relating to moment of inertia and
rotational kinetic energy.

e Define the term torque.

¢ Identify the SI unit of torque, which is N m, which is not
the same as a joule.

® Express torque in terms of moment of inertia and angular
acceleration.

e Derive an expression for the work done by the torque.

Grade 10
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e Use the formula W = 76 to solve problems related to work
done by torque.

¢ Define the angular momentum of a particle of mass m and
write its SI unit.

e State the law of conservation of angular momentum.

e Solve problems using the law of conservation of angular
momentum.

e State the first and second conditions of equilibrium.
¢ Solve problems related to conditions of equilibrium.

¢ Define the term centre of mass (centre of gravity) of a solid
body.

e Determine the centre of gravity using a plumb-line method.

¢ Define the terms: stable, unstable and neutral equilibrium.

The moment of inertia of a point mass

The moment of inertia of a body is a measure of the manner in
which the mass of that body is distributed in relation to the axis
about which that body is rotating. It is dependent on the:

* mass of the body:

* size of the body

* shape of the body

* which axis'is being considered.

A spinning flywheel possesses kinetic energy, but how much? The
expression KE =7 my? applies here, but the difficulty is that different
parts of the flywheel are moving at different speeds — the regions
further from the-axis of rotation are going faster.

With linear motion, the kinetic energy is determined solely by the
mass of the body and its speed. With the flywheel, the mass and the
angular velocity are important, but there is now a third factor — how
that mass is distributed in relation to the axis.

Consider two wheels each of mass M, but one is made in the form
of a uniform disc whereas the other consists of a ring of the same
radius R fixed to the axle by very light spokes rather like a bicycle
wheel (Figure 1.39).

Both are spinning with the same angular velocity, w. We can easily
calculate the kinetic energy stored in the second flywheel because
all its mass is at the rim.

You know that for a point mass going steadily in a circle of radius r
at a linear speed v, that speed is related to its angular speed by:

v
w=7 SOV=rw

Grade 10

KEY WORDS

moment of inertia a measure
of the distribution of the mass
of a body in relation to its
axis of rotation

kinetic energy the work
needed to accelerate a body
of a given mass from rest to

its current velocity

W

[

Figure 1.39 Two wheels of
the same mass but different
construction.
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Place two different sized
rolls of adding machine tape
or other rolled paper on a
dowel. Attach heavy clips

to the rolls and hold them
so that they cannot unwind.
Release the rolls at the same
time and note which unrolls
most rapidly. Which roll

has the greatest rotational
inertia?

This flywheel has an angular speed w, and since the whole of its
mass is going in a circle of radius R it is all travelling at a linear
speed v = Rw. The kinetic energy, 3 mv?, here will total ; MR?w?.

What can we say about the first flywheel? Its total kinetic energy
will be less, because most of its mass is moving at a speed slower
than v. How can‘we go further than that?

A way forward is to think of the wheel as consisting of a large
number of separate particles. There is no need to relate them to the
individual atoms of the metal — we are just imagining it to be made
up of a huge number of verysmall bits.

One of these bits, of mass m and distance r out from the axis, will
have its share of the kinetic energy given by 3 mv2which can be
expressed as %mrzw2 (since v = rw).

Rotational kinetic energy of a body

The total kinetic energy of the whole flywheel is just the sum of
every particle in it. Those particles have different speeds v, but every
one hasthe same angular velocity w.

Adding all those kinetic energies, and denoting each particle with a
subscript 1, 2, 3... and on for ever, we get:

Total kinetic energy = %mlrlzw2 + %m2r22w2+ %m3r32w2 + ...

We can rewrite this as:

7 (mr?+mpyr’+ mr?)w + ..

The expression in the bracket is the rotational equivalent of mass

in the expression of linear kinetic energy ( 3 #m2), and we call it the
body’s moment of inertia, I. Its units will be kg m*.

We can simplify it if we replace all those separate values of > by the
average value of r* for all the particles in that body. It then becomes
the total mass M of the body (which can be measured with an
ordinary balance) multiplied by the average value of * for all the
particles (which can be calculated by a geometrical exercise for
various shapes of body).

The moment of inertia of a body is its rotational inertia. It is not a
constant for that body, because it depends on the axis chosen for it
to rotate around. It may be defined for a given body about a given
axis as the sum of mr* for every particle in that body (where m is the
mass of the particle and r is its distance from the axis.

For a rotating body, its kinetic energy (KE) = 3 I w?

Grade 10
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Worked example 1.14

Find the moment of inertia of a point I M R
mass of 0.001 kg at a perpendicular (kg m?) | (kg) | (m)
distance of 2 m from its axis of rotation. ? 0.001] 2

Note that the perpendicular distance from a given axis of
rotation is specified. This is the value you need for R in the
equation.

Use I = MR?
Substitute given values: I = 0.001 x 22= 0.004 kg m?

Worked example 1.15

Find the moment of inertia of a disc of I M R
radius 0.25 m and mass 0.5 kg. (kg m?) | (kg) | (m)
Use I = 3 MR? 2 0.5 |0.25

Substitute in given values: I =3 x 0.5 x 0.25? = 0.015625 kg m?

Worked example 1.16

Find the moment of inertia of a sphere I M R
of mass 0.5 kg and radius 0.15 m. (kg m?) | (kg) | (m)
Use I = ZMR? 2 0.5 | 0.55

Substitute in given values: I =2 x 0.5 x 0.15? = 0.0045 kg m?

Worked example 1.17

Find the kinetic energy of a rotating | KE I @
body with moment of inertia () | (kg m?) | (rad/s)
0.004 kg m? and angular velocity of > 0.004 0.55
0.5 rad/s.

Use KE = ; Iw?
Substitute in given values: KE = 3 x 0.004 x 0.52 = 0.0005 J

Torque

A torque is a turning effect. It is the total moment acting on that
body about the axis of rotation, and is measured by multiplying the

force by its perpendicular distance from the axis.

\
\
\
.
.
.
FN
~

The SI unit of torque is N m. This is not the same as a joule!

torque = force X perpendicular distance

7 = F X

7/'perpendicular

The linear equivalent of a torque is a force.

Grade 10

Make sure that you
understand why the
expression for kinetic energy
of a rotating body is 3 Iw?

by comparing it with the
expression for kinetic energy
of a body moving with linear
motion.

Some moments of inertia
A point mass, M: I = MR?

A disc of mass M and
radius R (as with the first
flywheel): I = 1 MR?

A sphere of mass M and
radius R rotating on its axis:
I= MR

torque the tendency of a
force to rotate an object
about its axis of rotation

-

10N

Torque about axis =
TONx2m=20Nm

10N

Torque about axis =
TONx1.5m=15Nm

Figure 1.40 The value of the
torque depends on the distance
from the axis.
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In a small group, discuss
why distance is part of the
definition of a torque.

Worked example 1.18

Find the work done when a
torque of 5 N m moves through
an angle of m radians.

w T 0
(3) | (Nm) | (rad)
? 5 m

Use W=10
Substitute given values
W=>5m=>5mnd

Remember that you can use
this triangle to rearrange the
formula. Cover up the term
you are trying to find and
the triangle will give you the
form you need.

Figure 1.41

Worked example 1.19

Find the torque when the
work done to move through
an angle of m radians is 10 J.

w T g

(3) | (Nm) | (rad)

10 ? n
Use W=T186

Rearrange it so that torque
is on the left-hand side.

T= 0_
Substitute given values

7=—Nm
i

Torque in terms of moment of inertia and angular
acceleration

Since the linear equivalent of a torque, a force, can be found using
Newton’s second law:

force = mass x acceleration
you can see that, using the same law,
torque = moment of inertia x angular acceleration

If we give torque the symbol 7, then in symbols this equation is
written as:

7=1Ia

Work done by the torque

In linear terms the work done by a force is Fs, the force (F)
multiplied by the distance (s) it moves in that direction. Likewise
when a torque turns a body, the work it does = 7 0, the torque
multiplied by the angle it turns through.

Angular momentum of a particle and its SI unit

The linear momentum of a body of mass m moving with a velocity
v is defined to be mv. Likewise the angular momentum of a body
of moment of inertia I rotating at an angular velocity w is defined to
be Iw. Both linear momentum and angular momentum are vector
quantities — they have magnitude and direction. Its units are N m s.

The law of conservation of angular momentum

The effect of an unbalanced force on a body is to cause its
momentum to change. By Newton’s second law of motion the
momentum changes at a rate that is proportional to the magnitude
of that force, and this leads to F = ma.

Similarly, the effect of an unbalanced torque on a body that can
rotate is to cause its angular momentum to change, at a rate which is
proportional to the magnitude of the torque. This leads to:

7 = Jo (the moment of inertia multiplied by the angular
acceleration).

Just as linear momentum is conserved in the absence of a force,
so is the angular momentum in the absence of a torque. The
conservation of angular momentum says:

* if no resultant torque is acting, the angular momentum of a body
cannot change.

This principle is demonstrated readily by a spinning skater, as
shown in Figure 1.42. An ice skater holds her arms outstretched to
either side and starts to spin round as fast as she can. She then folds
her arms and her rate of rotation rises even further. By bringing
more of her mass in closer to the axis of rotation, she has reduced
her moment of inertia. Since no external torque is acting, Iw has to
stay constant. Here I is made less, so w has to increase.

Grade 10
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If you have access to a chair that can swivel round freely, you
can do this for yourself.

Hold a large mass in each hand and extend your arms fully to
either side. Sit in the chair and get your friends to turn the
chair round as fast as they can. Tell them to stop turning, and
bring the masses close in to your body. Your moment of inertia
has fallen so you should spin faster. Your angular momentum is
conserved.

Your rotational kinetic energy is 2 Iw?. This can be written

as 7 (Iw)w. As you bring your arms in, the (Iw) term stays
constant. You are spinning faster, though, so that extra factor
of w means you have gained in rotational kinetic energy.

Where has it come from? If you have tried this, you may well
have felt the answer. As those two masses were pulled into a
tighter circle, you had to provide the increasing centripetal
force to achieve this. You had to exert a force, and had to
move that force through a distance. In other words, you did
some work.

Therefore you had to release some of the chemical energy in
your food - and that is where the extra kinetic energy came
from.

Worked example 1.20

No external force acts on a skater. Her moment of inertia is
initially 60 kg m2. Her angular velocity is 0.2 rad s at the
beginning of a spin. She brings in her arms and her angular
velocity increases so that her moment of inertia decreases to
50 kg m?. Find her final angular velocity.

initial angular momentum = final angular momentum

I w I w
(kg m?) | (rad/s) (kg m?) | (rad/s)
60 0.2 50 ?

angular momentum at end of spin = angular momentum at
beginning of spin

60 x 0.2 = 50 x final angular velocity

final angular velocity = 00x0.2
50
0.24 rad/s
Grade 10

'

Figure 1.42 Spinning skater.

In a small group, make a
list of applications of the
principle of conservation of
angular momentum. To start
you off, think about other
sports where spinning is
required.

In a small group, make a
poster to compare linear
and rotational motion.

You should include all the
information you have learnt
in this unit, and rotational
equivalents of Newton's first
and second laws.
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This table summarises the relationships between linear and angular

quantities.
equilibrium a stable -
situation in which forces Linear Angular
cancel one another out P=mv L =Iw
F=ma 7=Ia
F = A_p T= A_L
At At
Ap=0 AL=0
At At

The conditions of equilibrium

There are two conditions that must be satisfied if a body is to be in
equilibrium.

1 The forces acting on it must sum to zero.

2 The turning effects of the forces must sum to zero.

Worked example 1.21

Explain why these systems are in equilibrium.

a) b)
VIIIIIIIVe
7N 6 N
—1m 1m
7N 3N 3N
Figure 1.43

In a) there is no turning effect so condition 2 above is
satisfied. The forces are 7 N upwards and 7 N downwards so
the forces acting sum to zero, satisfying condition 1 above.
So a) is in equilibrium.

In b) there would be a turning effect but one is 3 N m
anticlockwise and the other is 3 N m clockwise to they sum
to zero so condition 2 above is satisfied. The forces are 6 N
upwards and a total of 6 N downwards so these sum to zero
so condition 1 above is satisfied. So b) is in equilibrium.

Grade 10
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The centre of mass (centre of gravity) of a solid DID YOU KNOW?

bOdy Engineers try to design a
The centre of mass of a solid body is the point at which the body’s sports car’s centre of mass
whole mass can be considered to be concentrated for the purpose as low as possible to make
of calculations. In a solid body, the position of its centre of mass is the car handle better. When
fixed in relation to the object (but not necessarily in contact with high jumpers perform a
it). The centre of mass is often called the centre of gravity but this ‘Fosbury Flop, they bend
is only true in a system where the gravitational forces are uniform, their body in such a way
such as on Earth. 1N, b that it is possible for the

: jumper to clear the bar
Activity 1.24: Determine the centre of gravity using a while his or her centre of
plumb—line method mass does not.

Repeat Activity 1.13 (see page 19) but this time, rather than
using a piece of thick card, use an object made from modelling
clay.

Stable, unstable and neutral equilibrium

An object is in stable equilibrium if, when it/is slightly displaced, it
returns to its original position.

An object is in unstable equilibrium if, when it is slightly displaced, '
it moves further away from its original position. Figure 1.44 These spheres will

) return to their original position
when they are displaced.

KEY WORDS

stable equilibrium the

Figure 1.45 If this marble is displaced it will run down the ramp and | t€ dency of an object, 7f it is
not return to its original position. d75p ?aced, t? I eturn to its
original position

unstable equilibrium the
tendency of an object, if it is
displaced, to keep moving and
not to return to its original
position

neutral equilibrium the
tendency of an object, if it is
displaced, to neither return
to its original position nor to
move farther from it

An object is in neutral equilibrium if, when it is slightly displaced,
the system does not necessarily return to its original position

but neither does it move further away. For example, if you kick a
football along the ground it will roll a little way and then stop at
another spot. The kick changes its position but not its stability.

Figure 1.46 This is neutral equilibrium.

Grade 10
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DID YOU KNOW?

The concept of centre of
mass was first introduced
by the ancient Greek
mathematician, physicist,
and engineer Archimedes.
He showed that the torque
exerted on a lever by
weights resting at various
points along the lever is
the same as what it would
be if all of the weights were
moved to a single point

— their centre of mass. In
work on floating bodies

he demonstrated that the
orientation of a floating
object is the one that makes
its centre of mass as low as
possible.

DID YOU KNOW?

The centre of mass on an
aircraft significantly affects
the stability of the aircraft.
To ensure the aircraft is safe
to fly, the centre of mass
must fall within specified
limits.

The moment of inertia of a point mass, M, is I = MR,

The moment of inertia for a disc of mass M and radius R is:
1

I=75MRe.

The moment of inertia for a sphere of mass M and radius R

rotating on its axis is: [ = 2 MRe.

The rotational kinetic energy of a body is I

You can use the above formulae for simple problems relating
to moment of inertia and rotational kinetic energy.

A torque is a turning effect. It is the total moment acting
on that body about the axis of rotation, and is measured by
multiplying the force by its perpendicular distance from the
axis. 7=Fxr . Its unit is N m, which is not the same as a
joule.

torque = moment of inertia x angular acceleration

If we give torque the symbol 7, then in symbols this
equation is written as:
T=Ia

When a torque turns a body the work it does = 7 8, the
torque multiplied by the angle it turns. You can use this
formula W = 10 to solve problems related to work done by
torque.

The angular momentum of a body of moment of inertia I
rotating at an angular velocity w is defined to be Iw. Its
units are N m s.

The conservation of angular momentum says: if no resultant
torque is acting, the angular momentum of a body cannot
change.

You can use this law to solve problems.

There are two conditions that must be satisfied if a body is
to be in equilibrium.

1 The forces acting on it must sum to zero.
2 The turning effects of the forces must sum to zero.
You can solve problems using the conditions of equilibrium.

The centre of mass of a solid body is the point at which the
body’s whole mass can be considered to be concentrated for
the purpose of calculations. You can determine the centre of
gravity using a plumb-line method.

An object is in stable equilibrium if, when it is slightly
displaced, it returns to its original position.

An object is in unstable equilibrium if, when it is slightly
displaced, it moves further away from its original position.

Grade 10
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® An object is in neutral equilibrium if, when it is slightly
displaced, the system does not necessarily return to its
original position but neither does it move further away.

Review questions

1. Define the moment of inertia of a point mass.
2. Define rotational kinetic energy of a body.

3. a) Find the moment of inertia of a point mass of 0.005 gata
perpendicular distance of 3 m from its axis of rotation.

b) Find the moment of inertia of a sphere of mass 0.3 kg and
radius 0.6 m.

c) Find the kinetic energy of a rotating body with moment of
inertia 0.003 kg m?* and angular velocity of 0.6 rad s™'.

4. Define the term torque and identify its SI unit.

5. Express torque in terms of moment of inertia and angular
acceleration.

6. Derive an expression for the work done by the torque.

7. a) Find the work done when a torque of 3.5 N m moves
through an angle of 37 radians.

b) Find the torque when the work'done to move through an
angle of ;7 radians is 3.

8. Define the angular momentum of a particle of mass m and
write its SI unit.

9. State the law of conservation of angular momentum.

10. Give examples of uses of the law of conservation of angular
momentum.

11. State the first and second conditions of equilibrium.

12. Explain why the system in Figure 1.47 is in equilibrium?

3m ~—1m
|

1N 3N
Figure 1.47

13. Define the term centre of mass (centre of gravity) of a solid
body.

14. Explain how you can determine the centre of gravity using a
plumb-line method.

15. Define the terms stable, unstable and neutral equilibrium.

Grade 10 ﬂ
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1.4 Newton’s law of universal gravitation

By the end of this section you should be able to:
e State Newton’s law of universal gravitation.

¢ Determine the magnitude of the force of attraction between
two masses separated by a distance r.

¢ (alculate the value of g at any distance above the surface
of the Earth.

e State Kepler's laws of planetary motion.

e Use Kepler's laws of planetary motion to determine the
period of any planet.

e Differentiate between the orbital and escape velocity of a
satellite.

e Determine the period of a satellite around a planet.
¢ (alculate the orbital and escape velocity of a satellite.

e Describe the period, position and function of a
geostationary satellite.

Newton’s law of universal gravitation

To simplify matters we shall consider that the planets go round the
Sun in circular orbits, which is nearly the case. There is no force
opposing their motion, which is why they just keep going.

There has to be a force pulling them towards the Sun, though.
Otherwise they would keep moving in a straight line. If the planet
has a mass m, is travelling at a speed v and follows an orbit of radius
r, the magnitude of the force straight towards the Sun has to be
my2.

7

There is nothing but space between the planet and the Sun. What
is producing a force that size? The answer is gravitation. This is a
force of attraction that exists between any two lumps of matter,
but which becomes noticeable only if at least one of them is of
astronomical size.

Based on observations of the path of the Moon, Newton proposed

a formula to describe how this force must behave. In doing so, he
imagined that the laws of nature that applied to objects on Earth also
applied to heavenly bodies. At the time this was a very daring idea.

Grade 10
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The law has since been confirmed by incredibly sensitive — r _

experiments carried out between a pair of masses on Earth, and is : :

known as Newton’s universal law of gravitation. e -
M F F Mo

If two masses M and M, are a distance r apart, Newton claimed that

the gravitational force F between them was proportional to each of ~ Figure 1.48 A gravitational force
the masses, and decreased as they moved apart by an inverse square  dttractingtwo masses.
relationship — move three times as far apart and the force drops to

one ninth, for example.

Putting this together, we get:
o GMM,

7,.2

G is a constant for all matter everywhere; and is called the
gravitational constant. You should be able to see that it will have
units of N m*kg™.

Its value has been measured to be 6.67 x 10! N m? kg There is no
need to try to remember that, but its small size does illustrate the
weakness of the force.

Worked example 1.22

Find the gravitational force between the Earth and the Moon.
The mass of the Moon is 7.35 x 10% kg, the mass of the
Earth is 5.98 x 10% kg and the distance between them is
approximately 3 x 10 km.

F G M, M, r
(N) | (Nm? kg™?) (kg) (kg) (m)
? 6.67 x 10! | 7.35 x 10?2 | 5.98 x 10%*| 3 x 10°
GM M
Use F=—12%
r2

Substitute in given values and value for G.
. 6.67 x 10" N m? kg2 x 7.35 x 10% kg x 5.98 x 10% kg
- (3 x 10° km )?

_ 2.93 x 10
9 x 108

F = 3.257 x 10®¥ N

Finding the value of g at any distance above the
surface of the Earth
The value of g varies a little above the surface of the Earth. The law

of universal gravitation tells us that the force on a body acted upon
by Earth’s gravity is given by:

mlmz m1
F=G 7"2 Z(G? )m2

Grade 10
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Figure 1.49 To calculate g at a
height h above the Earth, use R +
h instead of r in the formula.

Kepler’'s laws describe the
motion of a planet around the
Sun

where r is the distance between the centre of the Earth and the

body, and m, is the mass of the Earth and m, is the mass of the
body.

Newton’s second law, F = ma, where m is mass and a is acceleration,
tells us that:

F=m,g
Comparing the two formulae you can'see that:
A

To calculate the value of g at a distance h above the surface of the
Earth, you need to substitute the value of the radius of the Earth R,
+ h, for r'in the above formula (see Figure 1.49).

Worked example 1.23

Find the value of g at a distance of 2 km above the surface of
the Earth.

g G m, r,
(m/s?) | (Nm?kg™) |  (kg) (m)
? 6.67 x 107 | 5.98 x 10%* | 6.4 x 10°+ 2000
Gm,
Use g =
r2

_ 6.67 % 107" x 5.98 x 10%*
(6.4 X 10° + 2 X 10%)?

_ 3.98 x 10%
(6 402 000)?
g 3:98x10¢
4.099 x 10"
g=9.71 m/s?

Kepler’s laws of planetary motion

Kepler’s laws are experimental laws that describe the rotation of
satellites about their parent body. They apply to all the satellites
around the Earth, but Kepler’s data were collected in the late 1500s
— before the telescope had been invented - by closely observing the
paths of the planets as they went around the Sun.

Kepler began with many sheets of figures, and amazingly succeeded
in spotting three unexpected patterns to them all. These are now
known as Kepler’s laws:

1 Each planet moves in a path called an ellipse, with the Sun at one
focus.

Grade 10
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2 The line that joins the Sun to the orbiting planet sweeps out
equal areas in equal times.

3 The square of the time it takes the planet to go round the Sun
(that is, the square of its year) is proportional to the cube of its
average distance from the Sun.

This law can be written in equation form as

an
GM

3

T? = a

where T is the time it takes the planet to go round the Sun, G is'the
gravitational constant, M is the mass of the planet and a is the mean
distance between the planet and the Sun.

We will look at the first two laws. Figure 1.50 illustrates what they
are saying. The two shaded areas are equal.

The second law follows from the conservation of energy. As the
planet gets closer to the Sun it speeds up, and as it climbs back

to a more distant part of its orbit some of that kinetic'energy is

transferred into its extra gravitational potential energy.

The planets all have orbits round the Sun that are close to being
circles. There are some natural satellites of the Sun that are very
different, though - the comets. These are only visible to us as they
pass quickly through the part of their orbit which is close to the
Sun. Most of the time they are remote from the Sun, in the darkness
of space and travelling more slowly.

The path of the Moon as it travels round the Earth is very nearly a
circle, though there are times in its orbit when it is closer to us and
so appears slightly larger in the sky.

The period, position and function of a
geostationary satellite
The Earth nowadays has a large number of satellites in orbit round

it. Most were made by humans, but the biggest one of them all is
natural - the Moon.

Since the path of the Moon as it travels around the Earth is very
nearlya circle, we can say that it has constant speed and is subject to
a centripetal force

2
p=
r
where m is the mass of the Moon, v is its speed and r is its distance
from the Earth.

If Earth has mass M, Newton’s law of universal gravitation tells us

that
GMm
=22
r2
So mv* = GMm
r r?
Grade 10

Fast Slow
speed

speed

N

sun Ellipse

Figure 1.50 Kepler’s laws 1 and 2.

Halley’s Comet

We know that this has
appeared to us in the sky
every 75-76 years during
recorded history, right back
to the year 240 BC. It was
last visible in 1986 and is
next due in 2061. All the
planets go round the Sun in
the same direction. Halley's
Comet goes the opposite
way round, and its orbit is
tilted at about 18° to that
of the planets. This strongly
suggests that it did not form
when the planets formed,
but passed by the Sun at a
later time close enough to
find itself captured by it.
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geostationary satellite

a satellite that orbits the
equator with the same angular
velocity as the Earth

On page 27, the orbital
period of five planets is
given. Use this data to

verify Kepler's third law.

Research some uses of
geostationary satellites.

This equation can be applied to all satellites. This means that
the smaller the distance from Earth; the greater the speed of the
satellite.

Worked example 1.24

Find the speed of the Moon if the mass of the Earth is
6 x 10% kg and the distance from the Moon to Earth is 4 x 108 m.

v G M r
(m/s) | (Nm?*kg?) | (kg) (m)
? 6.67 x 10t | 6 x 10%* 4 x 108

Usev=/G_M
r

y= [6.67 X 10" X 6 x 10*
4 x10°

, = [4.002 X 10%
4 x 108

v =V1.0005 x 10%

v =1.00025 x 10*

Geostationary satellites orbits are above the equator and they
are going round with the same angular velocity as the Earth.
This means that they have the same period as the Earth. They
are always in the same spot in the sky and so they are ideal for
communications purposes and for satellite navigation systems.

Orbital velocity of a satellite

Other satellites have orbits that are always moving relative to the
Earth. Many of these are used to look down on the Earth beneath.
Some are military spy satellites, but others observe the Earth - the
weather over the whole globe, the temperatures of the oceans and so
on. One is even used to provide a platform for a telescope to study
the rest of the universe clearly without having to peer through the
Earth’s atmosphere.

The satellites are all launched from sites as close to the equator as
possible, and certainly not from polar regions. The Earth is spinning
on its axis: the nearer you are to the equator, the greater the distance
you must travel to go round once in a day, and therefore the faster
your speed is due to this motion. If you wanted to throw a ball at as
great a speed as you could, propelling it forward from a fast-moving
car would give you a good start. Satellites launched by humans
similarly take advantage of the Earth’s motion.

Grade 10
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A satellite is not always sent into its final orbit in one step.
Sometimes it will be launched so it goes into a temporary ‘parking
orbit. From there a second carefully controlled rocket can be fired
to lift it into its permanent orbit.

All satellites are in orbits that are distant from Earth. There is no
mathematical reason why one should not orbit just above the
Earth’s surface, but the inconvenience of it is not the main reason
why nobody does that. The satellites are deliberately positioned
so that they are clear of the Earth’s atmosphere - this means there
is no resistance force to oppose the satellite’s horizontal motion,
otherwise an engine would be needed to cancel out such a force.
Each satellite moves at a particular velocityin its orbit — this is its
orbital velocity and is calculated by using'the equation w = 2n
where w is its angular velocity and T is its period.

Escape velocity of a satellite

If a satellite is launched vertically upward at a sufficiently large
velocity, it will be able to climb right out of the Earth’s potential well
and escape completely.

We can calculate this speed: Suppose the satellite has a mass m. At

the Earth’s surface the potential is GTM inJ kg™,

where M and R are the Earth’s mass and radius. Thefore the satellite
on the Earth’s surface will haye a potential energy of GMm in
joules. R

When completely clear of the Earth, its potential energy will be

zero. Therefore we must raise its potential energy by % in joules.

If the satellite is launched with a speed of v upwards, it will have an
amount of kinetic energy given by 1my?. If this kinetic energy is
enough to supply what is needed, it can escape.

Thus the minimum escape velocity is given by:

lmvz _ GMm
2 R

. 2GM
whence'v = =

The expression forzthe escape speed can be made even simpler. If we
substitute M = % in the above, we get:

escape velocity v = V(2gR)

Grade 10

Use w = 2—? to calculate

the orbital velocity of a
geostationary satellite.

Worked example 1.25

Find the escape velocity for
a satellite leaving Earth.
The radius of the Earth is
6.4 x 10°m and g is 9.81

N kg™

v g R
(m/s) | (Nkg™)| (m)
i 9.81 | 6.4x10°

Use v = (2gR)
v=1(2x9.81 X 6.4 x 10°)
v =1 (125 568 000)
v=11205.71 m/s
v=11km/s
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® Newton's law of universal gravitation states that if two
masses M. and M, are a distance r apart, the gravitational
force F between them is proportional to each of the masses,
and decreases as they move apart by an inverse square

relationship:
L G,
r2

® (is a constant for all matter everywhere, and is called the
gravitational constant. You should be able to see that it will
have units of N m? kg~2.

® You can use Newton's law of universal gravitation to
determine the magnitude of the force of attraction between
two masses separated by a distance r.

® You can calculate the value of g at any distance above the
surface of the Earth using:

ml
g=6=
® To calculate the value of g at a distance h above the surface

of the Earth, substitute the value of the radius of the
Earth, R + h for r in the above formula.

e Kepler's laws of planetary motion are:

1. Each planet moves in a path called an ellipse, with the
Sun at one focus.

2. The line that joins the Sun to the orbiting planet sweeps
out equal areas in equal times.

3. The square of the time it takes the planet to go round the
Sun (that is, the square of its year) is proportional to the
cube of its average distance from the Sun.

® You can use Kepler's laws of planetary motion to determine
the period of any planet.

® You can determine the period of a satellite around a planet
using 7= 2IL.
g w

® Geostationary satellite orbits are above the equator and
they are going round with the same angular velocity as the
Earth. This means that they have the same period as the
Earth. They are always in the same spot in the sky and so
they are ideal for communications purposes and for satellite
navigation systems.

¢ The orbital velocity of a satellite is the speed with which it
goes round the Earth (or other planet). The escape velocity
of a satellite is the speed it needs to escape the potential
well of the Earth.
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® You can calculate the orbital velocity of a satellite using

w = Z_T" and the escape velocity of a satellite using v = (2gR).

Review questions

1. State Newtons law of universal gravitation. :

2. Determine the magnitude of the force of attraction between
Mercury and the Sun. They are approximately 5.8 x 10 m
apart. The mass of Mercury is about 3.3 x 10?* kg and the mass
of the Sun is about 2 x 10% kg. G is 6.67 x 107N m>kg 2,

3. Calculate the value of gat 1000 m ab'ov¢ the surface of the
Earth. The radius of the Earth is 6378.1 km.

4. State Kepler’s laws of planetary motion.

5. Describe the period, position and function of a geostatlonary

satellite.

6. Differentiate between orbital énd escape Velocity of a satellite.

End of unit questions

1. a) Define the term projectile’
b) Give some examples of projectiles

o

a) Explain why'the angle is 1mportant when launching
projectiles.

b) Find the range of a projectile launched at an angle of 45°
with an‘initial velocity of 25 m/s.

c) Explain why the vertical velocity of a projectile does not
change.

»

a) State the centre of mass theorem.
b) Give some practical applications of centre of mass.

-

Draw a table to compare the equations of motion with constant
angular acceleration with the equations of motion with constant
linear acceleration.

o

Find the distance travelled when the initial angular velocity is
3 rad/s, the final angular velocity is 25 rad/s , and the time of
motion is 10 s.

Find the moment of inertia of a disc of radius 0.4 m and mass
0.75 kg.

a

N

Copy and complete this diagramsothat __,,_, .
the system is in equilibrium.

17N
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8. 'This system is in equilibrium. Write an expression linking
B Rand W.

9. . Determine the magnitude of the force of attraction between the
Moon and the Earth. They are approximately 4 x 10® m apart.
The mass of the Moon is 2 X 10** kg and the mass of the Earth is
6% 10* kg.

10. Geostationary satellites are placed in orbits of radius 4.2 x 10*
km: Use this information to deduce g at that height.

11. A climber of mass 80 kg is on a steep rock face. The force X
that the rock exerts on the climber is at an angle of 50° to
the vertical. Y, the other force on the climber, keeps him in
equilibrium and is provided by a rope at an angle of 40° to the
vertical.

a) Draw a sketch to show the forces acting on the climber.

b) From your sketch of the forces, sketch a triangle of forces to
show equilibrium.

c) Use your triangle of forces to find
i) X, the force the rock face exerts on the climber
ii) Y, the force provided by the rope.
12. Which of these answers is correct? Justify your answer.

If the polar ice caps melt completely as a result of rising global
temperatures, then

a) the Earth will rotate faster
b) the Earth will rotate slower
c) there will be no change in the angular speed

d) the duration of a day on the Earth will increase.
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