

COORDINATE GEOMETRY

Unit Outcomes:

After completing this unit, you should be able to:

* understand specific facts and principles about lines and circles.
- know basic concepts about conic sections.
- know methods and procedures for solving problems on conic sections.

Main Contents

3.1 STRAIGHT LINE
3.2 CONIC SECTIONS

Key terms
Summary
Review Exercises

INTRODUCTION

The method of analytic geometry reduces a problem in geometry to an algebraic problem by establishing a correspondence between a curve and a definite equation.

The concepts of lines and conics occur in nature and are used in many physical situations in nature, engineering and science. For instance, the earth's orbit around the sun is elliptical, while most satellite dishes are parabolic.

In this unit, you will study some more about straight lines and circles, and also the properties of the conic sections, circle, parabola, ellipse and hyperbola.

Historical Note

Apollonius of Perga
The Greek mathematician Apollonius (who died about 200 B.C.) studied conic sections. Apollonius is credited with providing the names "ellipse", "parabola", and "hyperbola" and for discovering that all the conic sections result from intersection of a cone and a plane. The theory was further advanced to its fullest form by
 Fermat, Descartes and Pascal during the $17^{\text {th }}$ century.

OPENING PROBLEM

A parabolic arch has dimensions as shown in the figure. Can you find the equation of the parabola? What are the respective values of y for $x=5,10$ and 15 ?

Figure 3.1

3.1 STRAIGHT LINE

Review on equation of a straight line

In Grade 10, you have learnt how to find the equation of a line and how to tell whether two lines are parallel or perpendicular by looking at their slopes. Now let us revise these concepts with the following Activity.

ACTIVITY 3.1

1 Given two points $\mathrm{P}(1,4)$ and $\mathrm{Q}(3,-2)$, find the equation of a line passing through P and Q ; and identify its slope and y-intercept.

2 Given the following equations of lines, characterize each line as vertical, horizontal or neither.
a $y=3 x-5$
b $\quad y=7$
c $\quad x=2$
d $\quad x+y=0$

3 Identify each of the following pairs of lines as parallel, perpendicular or intersecting (but not perpendicular).
a $\quad \ell_{1}: y=2 x+3 ; \ell_{2}: y=\frac{1}{2} x \quad 2$
b $\quad \ell_{1}: y=2 x+3 ; \ell_{2}: y=\frac{1}{2} x \quad 3$
c $\quad \ell_{1}: y=2 x+3 ; \ell_{2}: y=2 x+5$
d $\quad \ell_{1}: 3 x+4 y-8=0 \ell_{2}: 4 x-3 y-9=0$
From the above Activity, you can summarize as follows.

```
\(\checkmark\) Any two points determine a straight line.
\(\checkmark\) If \(\mathrm{P}\left(x_{1}, y_{1}\right)\) and \(\mathrm{Q}\left(x_{2}, y_{2}\right)\) are points on a line with \(x_{1} \quad x_{2}\), then
    y \(y_{1}=\left(\begin{array}{ll}\frac{y_{2}}{x_{2}} & x_{1}\end{array}\right)\left(\begin{array}{ll}x & x_{1}\end{array}\right)\) is the equation of the straight line and the ratio
    \(m=\frac{y_{2}}{x_{2}} \begin{array}{ll}x_{1}\end{array}\) is the slope of the line.
\(\checkmark\) If \(x_{2}=x_{1}\), then the line is vertical and its equation is given by \(x=x_{1}\); in this case
    the line has no slope.
\(\checkmark\) If two lines \(\ell_{1}\) and \(\ell_{2}\) have the same slope, then the two lines are parallel.
```

\checkmark If the product of the slopes of two lines ℓ_{1} and ℓ_{2} is -1 , then the two lines are
perpendicular.
\checkmark If the equation of a line is given by $y=m x+b$, then m is the slope of the line and
b is its y - intercept.

Example 1 Find the equation of the line that passes through the points $(-3,2)$ and $(4,7)$ and identify its slope.

Solution The slope is given by $m=\frac{7 \quad 2}{4(3)}=\frac{5}{7}$
Thus, for any point $\mathrm{P}(x, y)$ on the line, $\frac{y 2}{x(3)}=\frac{5}{7} \quad y=\frac{5}{7} x+\frac{29}{7}$

3.1.1 Angle Between Two Lines on the Coordinate Plane

In the previous section, you have seen how to identify whether two lines are parallel or perpendicular. Now, when two lines are intersecting, you will see how to define the angle between the two lines and how to determine this angle.

Group Work 3.1

Consider the following graph and answer the questions that follow:

Figure 3.2
Find
a $\quad \tan \alpha$
b slope of the line ℓ
C the relation between α and slope of ℓ
d If ℓ is vertical, then $\alpha=$ \qquad
e If ℓ is horizontal, then $\alpha=$ \qquad .
f If $\alpha>90^{\circ}$, do you get the same relation as in c above between $\tan \alpha$ and the slope of the line ℓ ?

Definition 3.1

The angle measured from the positive x-axis to a line in the counter-clockwise direction is called the angle of inclination of the line.

Example 2 If the angle of inclination of a line is 120°, then its slope is

$$
\tan 120^{\circ}=\sqrt{3} .
$$

Example 3 If the slope of a line is 1 , then its angle of inclination is 45°.

ACTIVITY 3.2

Consider the following two intersecting lines, and answer the questions that follow:

Figure 3.3
a What is the angle of inclination of ℓ_{1} ?
b What is the angle of inclination of ℓ_{2} ?
c Can you find any relation between α, γ and β ?

Definition 3.2

The angle between two intersecting lines ℓ_{1} and ℓ_{2} is defined to be the angle measured counter-clockwise from ℓ_{1} to ℓ_{2}.

From the above Activity, you have $=$, slope of $\ell_{1}=\tan \quad$ and slope of $\ell_{2}=\tan$

$$
\text { Thus }=\Rightarrow \tan =\tan (\quad)=\frac{\tan \tan }{1+\tan \tan }
$$

Hence if m_{1} is the slope of ℓ_{1} and m_{2} is the slope of ℓ_{2}, then the tangent of the angle between two lines ℓ_{1} and ℓ_{2} measured from ℓ_{1} to ℓ_{2} counter-clockwise is given by

$$
\tan =\frac{m_{2}-m_{1}}{1+m_{1} m_{2}} \text {, if } m_{1} m_{2}-1 .
$$

So, the angle can be found from the above equation.

\measuredangle Note:

The denominator $1+m_{1} m_{2}=0 \quad m_{1} m_{2}=-1 \quad \tan \quad$ is undefined $=90^{\circ}$.
Thus, the angle between the two lines is $90^{\circ} \quad m_{1} m_{2}=-1$ or $m_{1}=\frac{1}{m_{2}}$
Example 4 Given points $\mathrm{P}(2,3), \mathrm{Q}(-4,1), \mathrm{C}(2,4)$ and $\mathrm{D}(6,5)$, find the tangent of the angle between the line that passes through P and Q and the line that passes through C and D when measured from the line that passes through P and Q to the line that passes through C and D counter-clockwise.

Solution Let m_{1} be the slope of the line through P and Q and m_{2} be the slope of the line through C and D.
Then, $m_{1}=\frac{1 \quad 3}{4 \quad 2}=\frac{2}{6}=\frac{1}{3}$ and $m_{2}=\frac{5 \quad 4}{6} 2=\frac{1}{4}$.
Thus, the tangent of the angle between the line through P and Q and the line through C and D is

$$
\tan =\frac{m_{2} m_{1}}{1+m_{1} m_{2}}=\frac{\frac{1}{4} \frac{1}{3}}{1+\frac{1}{3}, \frac{1}{4}}=\frac{\frac{3}{12}}{\frac{12+1}{12}}=\frac{1}{13}
$$

Exercise 3.1

1 Write down the equation of the line that:
a passes through $(-6,2)$ and has slope $m=4$
b passes through $(6,6)$ and $(-1,7)$
c passes through $(2,-4)$ and is parallel to the line with equation $y=7 x \quad 10$.
d passes through $(2,-4)$ and is perpendicular to the line with equation $y=2 x \quad 1$.
e passes through $(1,3)$ and the angle from the line with equation $y=x+2$ to the line is 45°.
2 Find the tangent of the angle between the given lines.
a $\quad \ell_{1}: y=-3 x+2 ; \ell_{2}: y=-x$
b $\quad \ell_{1}: 3 x$ y $2=0 ; \ell_{2}: 4 x \quad y \quad 6=0$

3 Determine B so that the line with equation $5 x+B y \quad 6=0$ is:
a parallel to the line with equation $y=\frac{4}{7} x+1$
b perpendicular to the line with equation $y=\frac{4}{7} x+1$
4 A car rental company leases automobiles for a charge of 20 Birr/day plus $2 \mathrm{Birr} / \mathrm{km}$. Write an equation for the cost y Birr in terms of the distance x driven, if the car is leased for 5 days.
5 Water in a lake was polluted with sewage from a nearby town with 7 mg of waste compounds per $1000 l$ of water. It is determined that the pollution level would drop at the rate of 0.75 mg of waste compounds per 1000ℓ of water per year, if a plan proposed by environmentalists is followed. Let 2001 correspond to $x=0$ and successive years correspond to $x=1,2,3, \ldots$. Find the equation $y=m x+b$ that helps predict the pollution level in future years, if the plan is implemented.

3.1.2 Distance between a Point and a Line on the Coordinate Plane

ACTIVITY 3.3

Given a line ℓ and a point P not on ℓ;

a Draw line segments from point P to ℓ. (as many as possible).
b Which line segment has the shortest length?

Definition 3.3

Suppose a line ℓ and a point $\mathrm{P}(x, y)$ are given. If P does not lie on ℓ, then we define the distance d from P to ℓ as the perpendicular distance between P and ℓ. If P is on ℓ, the distance is taken to be zero.

Let a line $\ell: A x+B y+C=0$ with A, B and C all non-zero be given. To find the distance from the origin to the line $A x+B y+C=0$, you can do the following:

Figure 3.4
Draw $\overline{\mathrm{ON}}$ perpendicular to $A x+B y+C=0$. ONP is right angled triangle. Thus

$$
|\cos |=\frac{d}{\mathrm{OP}} \Rightarrow d=\mathrm{OP}|\cos |
$$

The x-intercept of $A x+B y+C=0$ is $\frac{C}{A}$.
Thus, $d=\frac{|C|}{|A|}|\cos |$
Again $\overline{\mathrm{ON}}$ being to the line $A x+B y+C=0$ gives: slope of $\overline{\mathrm{ON}}=\tan =\frac{B}{A}$
$\left(\right.$ because slope of $A x+B y+C=0$ is $\left.\frac{-A}{B}\right)$
This gives $|\cos |=\frac{|A|}{\sqrt{A^{2}+B^{2}}}$
Hence, the distance from the origin to any line $A x+B y+C=0$ with $A \quad 0, B \quad 0$ and
$C 0$ is given by $\frac{|C|}{\sqrt{A^{2}+B^{2}}}$

Example 5 Find the distance from the origin to the line $5 x \quad 2 y \quad 7=0$.
Solution The distance $d=\frac{|7|}{\sqrt{5^{2}+(2)^{2}}}=\frac{7}{\sqrt{29}}$

Group Work 3.2

1 Consider a point $\mathrm{P}(h, k)$ on the $x y$-coordinate system. Form a new x ' y ' coordinate system such that

a the origin of the new system is at $\mathrm{P}(h, k)$
b the x^{\prime}-axis is parallel to the x-axis and the y^{\prime}-axis is parallel to the y-axis.
Let P be a point on the plane such that it has coordinates $\mathrm{P}(x, y)$ in the $x y$-system and $\mathrm{P}\left(x^{\prime}, y^{\prime}\right)$ in the $x^{\prime} y^{\prime}$-system. Express x^{\prime} and y^{\prime} in terms of x, y, h and k.

Figure 3.5
2 If $(h, k)=(3,4)$, what is the representation of $\mathrm{P}(-3,2)$ (given in the $x y$-system) in the new $x^{\prime} y^{\prime}$-system?
From the above Group Work, you should get the translation formulas:
where (h, k) represents the origin of the new $x^{\prime} y^{\prime}$-system and $\left(x^{\prime}, y\right)$ and (x, y) represent the coordinates of a point in the $x^{\prime} y^{\prime}$ and $x y$ systems, respectively.

Example 6 Find the new coordinates of $\mathrm{P}(5,-3)$, if the axes are translated to a new origin $(-2,-3)$.

Solution The formulae are $x^{\prime}=x \quad h$ and $y^{\prime}=y \quad k$. Here, $(h, k)=(-2,-3)$
Thus, the new coordinates of $\mathrm{P}(5,-3)$ are $x^{\prime}=5 \quad(-2)=7$ and $y^{\prime}=-3 \quad(-3)=0$
Thus, in the $x^{\prime} y^{\prime}$-system, $\mathrm{P}(7,0)$.
Next, we will find the distance between any point $\mathrm{P}(h, k)$ and a line

$$
\ell: A x+B y+C=0 .
$$

Translate the coordinate system to a new origin at $\mathrm{P}(h, k)$.
Let the equation of the line in the new $x^{\prime} y^{\prime}$-system be $A^{\prime} x^{\prime}+B^{\prime} y^{\prime}+C^{\prime}=0$. Then, the distance from P to ℓ is given by, $\frac{\left|C^{\prime}\right|}{\sqrt{A^{\prime 2}+B^{1^{\prime 2}}}}$

But, $A^{\prime} x^{\prime}+B^{\prime} y^{\prime}+C=0 \quad A^{\prime}\left(\begin{array}{ll}x & h\end{array}\right)+B^{\prime}\left(\begin{array}{ll}y & k\end{array}\right)+C=0$

$$
\begin{aligned}
& A^{\prime} x \quad A^{\prime} h+B^{\prime} y \quad B^{\prime} k+C^{\prime}=0 \\
& A^{\prime} x+B^{\prime} y+\left(\begin{array}{lll}
C & A^{\prime} h & B^{\prime} k
\end{array}\right)=0
\end{aligned}
$$

Since in the $x y$-system the equation is $A x+B y+C=0$
You get $A=A^{\prime}, B=B^{\prime}, C=C^{\prime} \quad A^{\prime} h \quad B^{\prime} k$
So, $C^{\prime}=A^{\prime} h+B^{\prime} k+C=A h+B k+C$

Hence the distance from $\mathrm{P}(h, k)$ to ℓ is given by

$$
\frac{|A h+B A+C|}{\sqrt{\sqrt{A^{2}}-B^{2}}}
$$

Example 7 Find the distance between $\mathrm{P}(-4,2)$ and $\ell: 2 x+9 y \quad 3=0$

Solution

$$
d=\frac{|2(4)+9(2) \quad 3|}{\sqrt{2^{2}+9^{2}}}=\frac{|8+18 \quad 3|}{\sqrt{85}}=\frac{7}{\sqrt{85}}
$$

1 Find the distance of each of the following lines from the origin.
a $\quad 4 x-3 y=10$
b $\quad x-5 y+2=0$
c $\quad 3 x+y-7=0$

2 Find the distance from each point to the given line.
a $\quad \mathrm{P}(-3,2) ; 5 x+4 y \quad 3=0$
b $\quad \mathrm{P}(4,0) ; 2 x \quad 3 y \quad 2=0$
c $\quad \mathrm{P}(-3,-5) ; 2 x \quad 3 y+11=0$

3.2 CONIC SECTIONS

3.2.1 Cone and Sections of a Cone

The coordinate plane can be considered as a set of points which can be written as

$$
\mathbb{R}^{2}=\mathbb{R} \times \mathbb{R}=\{(x, y): x, y \quad \mathbb{R}\}
$$

If some of the points of the plane satisfy a certain condition, then these points make up a subset of the set of all points (i.e. the plane).

Definition 3.4

A locus is a system of points, lines or curves on a plane which satisfy one or more given conditions.

Example 1

The following are examples of loci (plural of locus).
1 The set $\left\{(x, y) \quad \mathbb{R}^{2}: y=3 x+5\right\}$ is a line in the coordinate plane.
2 The set of all points on the x-axis which are at a distance of 3 units from the origin is $\{(3,0),(3,0)\}$.

In this subsection, the plane curves called circles, parabolas, ellipses and hyperbolas will be considered.

Consider two right circular cones with common vertex and whose altitudes lie on the same line as shown in Figure 3.6.

1 If a horizontal plane intersects /slices through one of the cones, the section formed is a circle.

2 If a slanted plane intersects /slices through one of the cones, then the section formed is either an ellipse or a parabola.

3 If a vertical plane intersects /slices through the pair of cones, then the section formed is a hyperbola.

Since each of these plane curves are formed by intersecting a pair of cones with a plane, they are called conic sections.

3.2.2 Circles

ACTIVITY 3.4

Describe each of the following loci.
a The set of all points in a plane which are at a distance of 5 units from the origin.
b The set of all points in a plane which are at a distance of 4 units from the point $\mathrm{P}(1,2)$.

Each of the loci described in Activity 3.4 represents a circle.

Definition 3.5

A circle is the locus of a point that moves in a plane with a fixed distance from a fixed point. The fixed distance is called the radius of the circle and the fixed point is called the centre of the circle.

From the above definition, for any point $\mathrm{P}(x, y)$ on a circle with centre $\mathrm{C}(h, k)$ and radius $r, \mathrm{PC}=r$ and by the distance formula you have,

From this, by squaring both sides, you get

$$
\left(\begin{array}{ll}
x & h
\end{array}\right)^{2}+\left(\begin{array}{ll}
y & k
\end{array}\right)^{2}=r^{2}
$$

The above equation is called the standard form of the equation of a circle, with centre $\mathrm{C}(h, k)$ and radius r.

If the centre of a circle is at the origin (i.e. $h=0, k=0$), then the above equation becomes,

$$
x^{2}+y^{2}=r^{2}
$$

The above equation is called the standard form of equation of a circle, with centre at the origin and radius r.

Example 2 Write down the standard form of the equation of a circle with the given centre and radius.
a
$\mathrm{C}(0,0), r=8$
b $\quad \mathrm{C}(2,-7), r=9$

Solution

a $\quad h=k=0$ and $r=8$
Therefore, the equation of the circle is $\left(\begin{array}{ll}x & 0\end{array}\right)^{2}+\left(\begin{array}{ll}y & 0\end{array}\right)^{2}=8^{2}$.
That is, $x^{2}+y^{2}=64$.
b

$$
h=2, k=-7 \text { and } r=9 .
$$

Therefore, the equation of the circle is $(x \quad 2)^{2}+(y+7)^{2}=9^{2}$.
That is, $\left(\begin{array}{ll}x & 2\end{array}\right)^{2}+(y+7)^{2}=81$.

Example 3 Write the standard form of the equation of the circle with centre at $\mathrm{C}(2,3)$

 and that passes through the point $\mathrm{P}(7,-3)$.
Solution Let r be the radius of the circle. Then the equation of the circle is

$$
\left(\begin{array}{ll}
x & 2
\end{array}\right)^{2}+\left(\begin{array}{ll}
y & 3
\end{array}\right)^{2}=r^{2}
$$

Since the point $\mathrm{P}(7,-3)$ is on the circle, you have

$$
(7 \quad 2)^{2}+(-3-3)^{2}=r^{2} \text {. }
$$

This implies, $5^{2}+(-6)^{2}=r^{2}$.
So, $r^{2}=61$.
Therefore, the equation of the circle is

$$
\left(\begin{array}{ll}
x & 2
\end{array}\right)^{2}+\left(\begin{array}{ll}
y & 3
\end{array}\right)^{2}=61 .
$$

Example 4 Give the centre and radius of the circle,
a $\quad(x \quad 5)^{2}+(y+7)^{2}=64$
b $\quad x^{2}+y^{2}+6 x \quad 8 y=0$.

Solution

a The equation is $(x \quad 5)^{2}+(y+7)^{2}=8^{2}$. Therefore, the centre C of the circle is $\mathrm{C}(5,7)$ and the radius r of the circle is $r=8$.
b By completing the square method, the equation is equivalent to

$$
x^{2}+6 x+9+y^{2} \quad 8 y+16=9+16=25 .
$$

This is equivalent to,

$$
(x+3)^{2}+(y-4)^{2}=5^{2} .
$$

Therefore, the centre C of the circle is, $\mathrm{C}(-3,4)$ and the radius r of the circle is $r=5$.

ACTIVITY 3.5

1 Find the perpendicular distance from the centre of the circle with equation

$$
\left(\begin{array}{ll}
x & 1
\end{array}\right)^{2}+(y+4)^{2}=16
$$

to each of the following lines with equations:
a $\quad 3 x \quad 4 y \quad 1=0$
C $3 x \quad 4 y+2=0$
b $\quad 3 x \quad 4 y+1=0$

2 Sketch the graph of the circle and each of the lines in Question 1 above, in the same coordinate system. What do you notice?

From Activity 3.5 , you may have observed that:
1 If the perpendicular distance from the centre of a circle to a line is less than the radius of the circle, then the line intersects the circle at two points. Such a line is called a secant line to the circle.

2 If the perpendicular distance from the centre of a circle to a line is equal to the radius of the circle, then the line intersects the circle at only one point. Such a line is called a tangent line to the circle and the point of intersection is called the point of tangency.
3 If the perpendicular distance from the centre of a circle to a line is greater than the radius of the circle, then the line does not intersect the circle.

\approx Note:

1 A line with equation $A x+B y+C=0$ intersects a circle with equation $\left(\begin{array}{ll}x & h\end{array}\right)^{2}+\left(\begin{array}{ll}y & k\end{array}\right)^{2}=r^{2}$, if and only if,

$$
\frac{|A h+B k+C|}{\sqrt{A^{2}+B^{2}}} r \text {. }
$$

2 If a line with equation $A x+B y+C=0$ intersects a circle with equation
$\left(\begin{array}{ll}x & h\end{array}\right)^{2}+\left(\begin{array}{ll}y & k\end{array}\right)^{2}=r^{2}$, then $(x \quad h)^{2}+\left(\begin{array}{cc}\frac{A}{B} x & \frac{C}{B}\end{array}\right)^{2}=r^{2}$ is a quadratic equation in x. If $B=0$, then $x=\frac{C}{A}$ is a vertical line.
$\left(\begin{array}{ll}y & k\end{array}\right)^{2}=r^{2}\left(\frac{C}{A} h\right)^{2}=r^{2}\left(\frac{C+h A}{A}\right)^{2}$, which is a quadratic in y.
Solving this equation, you can get point(s) of intersection of the line and the circle.
Example 5 Find the intersection of the circle with equation $(x \quad 1)^{2}+(y+1)^{2}=25$ with each of the following lines.
a $4 x \quad 3 y \quad 7=0$
b $\quad x=4$

Solution

$$
\text { a } \quad 4 x-3 y \quad 7=0 \quad y=\frac{4 x}{3}
$$

$$
\text { So }(x \quad 1)^{2}+\left(\frac{4 x}{3}+1\right)^{2}=25
$$

$$
\begin{aligned}
& \Rightarrow \quad\left(\begin{array}{ll}
x & 1
\end{array}\right)^{2}+\left(\frac{4 x \quad 4}{3}\right)^{2}=25 \\
& \Rightarrow \quad 9(x \quad 1)^{2}+\left(\begin{array}{ll}
4 x & 4
\end{array}\right)^{2}=225 \\
& \Rightarrow \quad 9\left(x^{2} \quad 2 x+1\right)+\left(16 x^{2} \quad 32 x+16\right)=225 \\
& \Rightarrow \quad 9 x^{2} \quad 18 x+9+16 x^{2} \quad 32 x+16=225 \\
& \Rightarrow \quad 25 x^{2} \quad 50 x \quad 200=0 \\
& \Rightarrow \quad x^{2} \quad 2 x \quad 8=0 \\
& \Rightarrow \quad(x+2)(x-4)=0 \\
& \Rightarrow \quad x=-2 \text { or } x=4
\end{aligned}
$$

This gives $y=-5$ and $y=3$, respectively.
Hence the line and the circle intersect at the points $\mathrm{P}(-2,-5)$ and $\mathrm{Q}(4,3)$
b For the line $x=4$,

$$
\begin{aligned}
& \Rightarrow \quad(4 \quad 1)^{2}+(y+1)^{2}=25 \\
& \Rightarrow \quad 9+(y+1)^{2}=25 \\
& \Rightarrow \quad(y+1)^{2}=25 \quad 9=16 \\
& \Rightarrow \quad y+1= \pm 4 \\
& \Rightarrow \quad y=3 \text { or } y=5 .
\end{aligned}
$$

Hence, the intersection points of the line and the circle are $(4,3)$ and $(4,5)$.
Example 6 For the circle $(x+1)^{2}+(y$
$1)^{2}=13$, show that $y=\frac{3}{2} x \quad 4$ is a tangent line.

Solution The distance from C (1,1) to the line $-3 x+2 y+8=0$ is

$$
d=\frac{|3(1)+2(1)+8|}{\sqrt{(3)^{2}+2^{2}}}=\frac{|13|}{\sqrt{13}}=\sqrt{13}=r
$$

Hence, $y=\frac{3}{2} x \quad 4$ is a tangent line to the circle

$$
(x+1)^{2}+(y \quad 1)^{2}=13 .
$$

Example 7 Give the equation of the line tangent to the circle with equation $(x+1)^{2}+\left(\begin{array}{ll}y & 1\end{array}\right)^{2}=13$ at the point $\mathrm{P}(-3,4)$.

Solution First find the equation of the line ℓ that passes through the centre of the circle and the point of tangency.

The point of tangency is $\mathrm{T}\left(x_{\mathrm{o}}, y_{\mathrm{o}}\right)=\mathrm{T}(-3,4)$ and the centre is $\mathrm{P}(h, k)=\mathrm{P}(-1,1)$.
Therefore, equation of ℓ is given by:

$$
\frac{y \quad y_{0}}{x}=\frac{y 4}{x(3)}=\frac{4 \quad 1}{3+1} .
$$

This implies, $\frac{y-4}{x+3}=\frac{3}{2}$, which is equivalent to: $y \quad 4=\frac{3}{2} x<\frac{9}{2}$.
Hence $y=\frac{3}{2} x \quad \frac{1}{2}$ is the equation of the line ℓ.
But the line ℓ is perpendicular to the tangent line to the circle at $\mathrm{T}(3,4)$.
Therefore, the equation of the tangent line is given by:

$$
\frac{y 4}{x(3)}=\frac{2}{3} \Rightarrow \frac{y 4}{x+3}=\frac{2}{3}
$$

Therefore $y=\frac{2}{3} x+6$ is equation of the tangent line to the circle at $(-3,4)$.

es Note:

$\checkmark \quad$ If a line ℓ is tangent to a circle $(x \quad h)^{2}+\left(\begin{array}{ll}y & k\end{array}\right)^{2}=r^{2}$ at a point $\mathrm{T}\left(x_{0}, y_{0}\right)$, then the equation of ℓ is given by

$$
\frac{y y_{o}}{x x_{o}}=\frac{x_{o} h}{y_{o} k}
$$

Therefore, the equation of the tangent line to the circle in Example 7 can be found by:

$$
\frac{y}{x} \frac{y_{0}}{x_{0}}=\frac{y\rangle\langle 4}{x+3}=\left(\frac{3+1}{4-1}\right)=\frac{2}{3} .
$$

Example 8 Find the equation of the circle with centre at $\mathrm{O}(2,5)$ and the line with equation $x \quad y=1$ is a tangent line to the circle.

Solution The distance from the centre $\mathrm{O}(2,5)$ of the circle to the line with equation x y $1=0$ is the radius.
Thus, $r=\frac{\left|\begin{array}{ll}2 & 5\end{array}\right|}{\left.\sqrt{1^{1 /}+(} 1\right)^{2}}=2 \sqrt{2}$
Hence, the equation of the circle is $\left(\begin{array}{ll}x & 2\end{array}\right)^{2}+\left(\begin{array}{ll}y & 5\end{array}\right)^{2}=(2 \sqrt{2})^{2}=8$

Exercise 3.3

1 Write the standard form of the equation of a circle with the given centre and radius.
a
$\mathrm{C}(-2,3), r=5$
b
C $(8,2), r=\sqrt{2}$
c $\quad \mathrm{C}(-2,-1), r=4$

2 Find the coordinates of the centre and the radius for each of the circles whose equations are given.
a $\quad\left(\begin{array}{ll}x & 2\end{array}\right)^{2}+\left(\begin{array}{ll}y & 3\end{array}\right)^{2}=7$
b $\quad(x+7)^{2}+(y+12)^{2}=36$
c $\quad 4(x+3)^{2}+4(y+2)^{2}=7$
d $\quad(x \quad 1)^{2}+(y+3)^{2}=20$
e $\quad x^{2}+y^{2} \quad 8 x+12 y \quad 12=0$
f $\quad x^{2}+y^{2} \quad 2 x+4 y+8=0$

3 Write the equation of the circle described below:
a It passes through the origin and has centre at (5, 2).
b It is tangent to the y-axis and has centre at $(3,-4)$.
c The end points of its diameter are $(-2,-3)$ and $(4,5)$.
4 A circle has centre at $(5,12)$ and is tangent to the line with equation $2 x \quad y+3=0$. Write the equation of the circle.
5 Find the equation of the tangent line to each circle at the indicated point.
a $\quad x^{2}+y^{2}=145 ; \mathrm{P}(9,8)$
b $\quad\left(\begin{array}{ll}x & 2\end{array}\right)^{2}+(y$
$3)^{2}=10 ; P(1,2)$

3.2.3 Parabolas

ACTIVITY 3.6

1 Draw the graph of each of the following functions.
a $y=x^{2}+2 x+3$
b $\quad y=x^{2}+5 x \quad 4$

2 Find the axis of symmetry of the graphs in Question 1 above.
From Activity 3.6, you have seen that the graphs of both functions are parabolas; one opens upward and the other opens downward.

Definition 3.6

A parabola is the locus of points on a plane that have the same distance from a given point and a given line. The point is called the focus and the line is called the directrix of the parabola.

Figure 3.9
Consider Figure 3.9. Here are some terminologies for parabolas.
$\checkmark F$ is the focus of the parabola.
\checkmark The line ℓ is the directrix of the parabola.
\checkmark The line which passes through the focus F and is perpendicular to the directrix ℓ is called the axis of the parabola.
\checkmark The point V on the parabola which lies on the axis of the parabola is called the vertex of the parabola.
\checkmark The chord $\overline{\mathrm{BB}^{\prime}}$ through the focus and perpendicular to the axis is called the latus rectum of the parabola,
\checkmark The distance $p=\mathrm{VF}$ from the vertex to the focus is called the focal length of the parabola.

Historical Note

Galileo Galili (1564-1642)

In the $16^{\text {th }}$ century Galileo showed that the path of a projectile that is shot into the air at an angle to the ground is a parabola. More recently, parabolic shapes have been used in designing automobile highlights, reflecting telescopes and suspension bridges.

Now you are going to see how to find equation of a parabola with its axis of symmetry parallel to one of the coordinate axes. There are two cases to consider. The first case is when the axis of the parabola is parallel to the x-axis and the second case is when the axis of the parabola is parallel to the y-axis.

Equation of a parabola whose axis is parallel to the x-axis

a

b

Figure 3.10
Let $\mathrm{V}(h, k)$ be the vertex of the parabola. The axis of the parabola is the line $y=k$.
If the focus of the parabola is to the right of the vertex of the parabola, then the focus is $\mathrm{F}(h+p, k)$ and the equation of the directrix is $x=h \quad p$. Let $\mathrm{P}(x, y)$ be a point on the parabola. Then the distance from P to F is equal to the distance from P to the directrix. That is, $\mathrm{PF}=\mathrm{PA}$ where $\mathrm{A}\left(\begin{array}{ll}h & p, y)\end{array}\right.$.

This implies $\sqrt{(x \quad(h+p))^{2}+(y / k)^{2}}=\sqrt{\left(\begin{array}{ll}x & \left.\left(\begin{array}{ll}h & p\end{array}\right)\right)^{2}+(y \\ y\end{array}\right)^{2}}$.
Squaring both sides gives you, $\left.(x(h+p))^{2}+\left(\begin{array}{ll}y & k\end{array}\right)^{2}=\left(\begin{array}{lll}x & (h & p\end{array}\right)\right)^{2}$.
This implies, $x^{2} 2 x(h+p)+(h+p)^{2}+\left(\begin{array}{ll}y & k\end{array}\right)^{2}=x^{2} \quad 2 x\left(\begin{array}{ll}h & p\end{array}\right)+\left(\begin{array}{ll}h & p\end{array}\right)^{2}$.
This can be simplified to the form

$$
\left.\left(\begin{array}{ll}
y & k
\end{array}\right)^{2}=4 p(x) h\right)
$$

This equation is called the standard form of equation of a parabola with vertex $\mathrm{V}(h, k)$, focal length p; the focus F is to the right of the vertex and its axis is parallel to the x-axis. The parabola opens to the right.

If the focus of the parabola is to the left of the vertex of the parabola, then the focus is $\mathrm{F}(h \quad p, k)$ and the equation of the directrix is $x=h+p$. With the same procedure as above, you can get the equation

$$
\left(\begin{array}{ll}
y & k
\end{array}\right)^{2} \Rightarrow 4 p\left(\begin{array}{ll}
x & h
\end{array}\right)
$$

This equation is called the standard form of the equation of a parabola with vertex $\mathrm{V}(h, k)$, focal length p; the focus F is to the left of the vertex and its axis is parallel to the x-axis. In this case, the graph of the parabola opens to the left.

The standard form of the equation of a parabola with vertex $\mathrm{V}(h, k)$ and whose axis is parallel to x-axis is given below. Such a parabola is called an x-parabola.

\measuredangle Note:

The equation
$\left(\begin{array}{ll}y & k\end{array}\right)^{2}= \pm 4 p\left(\begin{array}{ll}x & h\end{array}\right)$
represents a parabola with:
$\checkmark \quad$ vertex $\mathrm{V}(h, k)$
\checkmark focus $(h \pm p, k)$.
\checkmark directrix : $x=h \pm p$.
$\checkmark \quad$ axis of symmetry $y=k$.
$\checkmark \quad$ If the sign in front of p is positive, then the parabola opens to the right.
$\checkmark \quad$ If the sign in front of p is negative, then the parabola opens to the left.
Example 9 Find the equation of the directrix, the focus of the parabola, the length of the latus rectum and draw the graph of the parabola.

$$
y^{2}=4 x
$$

Solution The vertex is at $(0,0)$ and $4 p=4$. Hence $p=1$.
The parabola opens to the right with focus $(h+p, k)=(0+1,0)=(1,0)$ and the directrix $x=h-p=0-1=1$. The axis of the parabola is the x-axis.

The latus rectum passes through the focus $\mathrm{F}(1,0)$ and is perpendicular to the axis, that is the x-axis.

Therefore, the equation of the line containing the latus rectum is $x=1$.
To find the endpoints of the latus rectum, you have to find the intersection point of the line $x=1$ and the parabola. That is, $y^{2}=4 \cdot 1=4 \quad y= \pm 2$.

Therefore, the end points of the latus rectum are $(1,2)$ and $(1,2)$ and the length of the latus rectum is:

$$
\sqrt{(1} 1)^{2}+(2 \quad 2)^{2}=\sqrt{16}=4 .
$$

The graph of the parabola is given in Figure 3.11.

Figure 3.11

Example 10 Find the equation of the directrix and the focus of each parabola and draw the graph of each of the following parabolas.
a $\quad 4 y^{2}=12 x$
b $\quad(y-2)^{2}=6(x-1)$
c $y^{2} \quad 6 y+8 x+25=0$

Solution

a The equation $4 y^{2}=12 x$ can be written as $y^{2}=\frac{12 x}{4}=3 x$
The vertex is $\mathrm{V}(h, k)=\mathrm{V}(0,0) .4 p=3$ and $p=\frac{3}{4}$.
Since the sign in front of p is negative, the parabola opens to the left.
The directrix is $x=h+p=0+\frac{3}{4}=\frac{3}{4}$.
The focus is $\mathrm{F}\left(\begin{array}{ll}h & p, k\end{array}\right)=\mathrm{F}\left(0 \frac{3}{4}, 0\right)=\mathrm{F}\left(\frac{3}{4}, 0\right)$.
The graph of the parabola is given in Figure 3.12.

Figure 3.12
b The vertex is at $\mathrm{V}(h, k)=\mathrm{V}(1,2)$
Since $4 p=6$, then $p=\frac{6}{4}=\frac{3}{2}$. The sign in front of p is positive. Hence the parabola opens to the right.
The focus is $\mathrm{F}(h+p, k)=\mathrm{F}\left(1+\frac{3}{2}, 2\right)=\mathrm{F}\left(\frac{5}{2}, 2\right)$
The directrix is $x=h-p=1 \frac{3}{2}=\frac{1}{2}$. The axis of the parabola is the horizontal line $y=k$, i.e. $y=2$ and the graph of the parabola is given in Figure 3.13.

Figure 3.13
c By completing the square, the equation $y^{2} \quad 6 y+8 x+25=0$ is equivalent to the equation $(y-3)^{2}=-8(x+2)$. The vertex of the parabola is at $\mathrm{V}(h, k)=\mathrm{V}(-2,3)$ and $-4 p=-8$ implies $p=2$. The sign in front of p is negative. Hence the parabola opens to the left.

The focus $\mathrm{F}(h \quad p, k)=\mathrm{F}(-2-2,3)=\mathrm{F}(-4,3)$, the equation of the directrix is $x=h+p=2+2=0$ and the equation of the axis of the parabola is $y=k$, i.e. $y=3$ with its graph given in Figure 3.14.

Figure 3.14

Example 11 Find the equation of the parabola with vertex $\mathrm{V}(-1,4)$ and focus $\mathrm{F}(5,4)$.
Solution Here $\mathrm{V}(h, k)=\mathrm{V}(-1,4)$.
Hence $h=-1$ and $k=4$ and the focus is given by $\mathrm{F}(h+p, k)=\mathrm{F}(5,4)$.
This implies $h+p=5$ and $k=4$. Then, $-1+p=5$, which implies $p=6$
Since the focus F is to the right of the vertex V , the parabola opens to the right.
Hence the equation of the parabola is given by:

$$
\left(\begin{array}{ll}
y & 4
\end{array}\right)^{2}=24(x+1)
$$

Equation of a parabola whose axis is parallel to the y-axis

Figure 3.15
Let $\mathrm{V}(h, k)$ be the vertex of the parabola. The axis of the parabola is the line $x=h$.
If the focus of the parabola is above the vertex of the parabola, then the focus is $\mathrm{F}(h, k+p)$ and the equation of the directrix is $y=k \quad p$. Let $\mathrm{P}(x, y)$ be a point on the parabola. Then the distance from P to F is equal to the distance from P to the directrix. That is, $\mathrm{PF}=\mathrm{PA}$ where $\mathrm{A}\left(\begin{array}{ll}x, k & p\end{array}\right)$, as shown in Figure 3.15

This can be simplified to the form

$$
\left(\begin{array}{ll}
x & h
\end{array}\right)^{2}=4 p\left(\begin{array}{ll}
y & k
\end{array}\right)
$$

The standard form of equation of a parabola with vertex $\mathrm{V}(h, k)$ and whose axis is parallel to the y-axis. Such a parabola is called a y-parabola.

\triangle Note:

The equation

$$
\left(\begin{array}{ll}
x & h
\end{array}\right)^{2}= \pm 4 p\left(\begin{array}{ll}
y & k
\end{array}\right)
$$

represents a parabola with
$\checkmark \quad$ vertex $\mathrm{V}(h, k)$
$\checkmark \quad$ focus $\mathrm{F}(h, k \pm p)$.
$\checkmark \quad$ directrix : $y=k \mp p$.
$\checkmark \quad$ axis of symmetry $x=h$
$\checkmark \quad$ If the sign in front of p is positive, then the parabola opens upward.
If the sign in front of p is negative, then the parabola opens downward.
Example12 Find the vertex, focus and directrix of the following parabolas; sketch the graphs of the parabolas in b and c.
a $\quad x^{2}=16 y$
b $\quad-2 x^{2}=8 y$
c $\quad(x-2)^{2}=8(y+1)$
d $\quad x^{2}+12 y \quad 2 x \quad 11=0$

Solution

a Here $4 p=16$ implies $p=4$.
Since the sign in front of p is positive, the parabola opens upward.
The vertex is $\mathrm{V}(h, k)=\mathrm{V}(0,0)$.
The focus is $\mathrm{F}(0, p)=\mathrm{F}(0,4)$.
The directrix is $y=k-p=0-4=-4$.
b $\quad-2 x^{2}=8 y$ can be written as $x^{2}=-4 y$.
Here, $-4 p=-4$ implies $p=1$.
Since the sign in front of p is negative, the parabola opens downward as shown in Figure 3.16.
The vertex is $\mathrm{V}(h, k)=\mathrm{V}(0,0)$.
The focus is $\mathrm{F}(h, k-p)=\mathrm{F}(0,0-1) \Rightarrow \mathrm{F}(0,-1)$.
The directrix is $y=k+p=0+1=1$.

Figure 3.16

Figure 3.17

C Here $4 p=8$ implies $p=2$.
Since the sign in front of p is positive, the parabola opens upward as shown in Figure 3.17.
The vertex

$$
\mathrm{V}(h, k)=\mathrm{V}(2,-1) .
$$

The focus is

$$
\mathrm{F}(h, k+p)=\mathrm{F}(2,-1+2)=\mathrm{F}(2,1) .
$$

The directrix is $y=k-p=-1-2=-3$.
d The equation $x^{2}+12 y \quad 2 x \quad 11=0$ is equivalent to $\left(\begin{array}{ll}x & 1\end{array}\right)^{2}=12\left(\begin{array}{ll}y & 1\end{array}\right)$.
Hence $4 p=12$ implies $p=3$;
Since the sign in front of p is negative, the parabola opens downward.
The vertex is $\mathrm{V}(h, k)=\mathrm{V}(1,1)$
The focus is $\mathrm{F}(h, k-p)=\mathrm{F}(1,1 \quad 3)=\mathrm{F}(1, \quad 2)$
The directrix is $y=k+p=1+3=4$

Example 13 (Parabolic reflector)

A paraboloid is formed by revolving a parabola about its axis. A spotlight in the form of a paraboloid 6 inches deep has its focus 3 inches from the vertex. Find the radius r of the opening of the spotlight.

Solution

First locate a parabolic cross section containing the axis in a coordinate system and label all the known parts and parts to be found as shown in Figure 3.18.
The parabola has the y-axis as its axis and the origin as its vertex. Hence the equation of the parabola is:

$$
x^{2}=4 p y .
$$

Figure 3.18

The focus is given $\mathrm{F}(0,3)=\mathrm{F}(0, p)$ Thus $p=3$ and the equation of the parabola is:

$$
x^{2}=12 y .
$$

The point $(r, 6)$ is on the parabola.

$$
\begin{aligned}
& \Rightarrow r^{2}=12 \cdot 6 \\
& \Rightarrow r^{2}=72 \\
& \Rightarrow r=\sqrt{72}>8.49 \text { inches. }
\end{aligned}
$$

Exercise 3.4

1 Write the equation of each parabola given below.
a Vertex $(-2,5)$; focus $(-2,-8)$
b Vertex $(-3,4)$; focus $(-3,12)$
c Vertex $(4,6)$; focus $(-8,6)$
d Vertex $(-1,8)$; focus $(6,8)$

2 Name the vertex, focus and directrix of the parabola whose equation is given and sketch the graph of each of the following.
a $\quad x^{2}=2 y$
b $\quad(x+2)^{2}=4(y$
c $\quad(y+2)^{2}=-16(x$
3)
d $\quad\left(\begin{array}{ll}x & 3\end{array}\right)^{2}=4 y$

3 Write the equation of each parabola described below.
a Focus (3, 5); directrix $y=3 \quad$ b $\quad \operatorname{Vertex}(-2,1)$; axis $y=1 ; p=1$
c Vertex $(4,3)$; passes through $(5,2)$, vertical axis
d Focus $(5,0) ; p=4$; vertical axis
4 Write the equation of each parabola described below.
a Vertex at the origin, axis along the x-axis, passing through $\mathrm{A}(3,6)$
b Vertex at $(4,2)$, axis parallel to the x-axis, passing through $\mathrm{A}(8,7)$
c Vertex at $(5,-3)$, axis parallel to the y-axis, passing through $\mathrm{B}(1,2)$
5 The parabola has a multitude of scientific applications. A reflecting telescope is designed by using the property of a parabola:
If the axis of a parabolic mirror is pointed toward a star, the rays from the star, upon striking the mirror, will be reflected to the focus.
Answer the following questions

Figure 3.19
a A parabolic reflector is designed so that its diameter is 12 m when its depth is 4 m . Locate the focus.
b A parabolic head light lamp is designed in such a way that when it is 16 cm wide it has 6 cm depth. How wide is it at the focus?
6 Find the equation of the parabola determined by the given data.
a The vertex is at $(1,2)$, the axis is parallel to the x-axis and the parabola passes through $(6,3)$.
b The focus is at $(3,4)$, the directrix is at $x=8$.

3.2.4 Ellipses

Group Work 3.3

Do the following in groups.
1 Draw a circle of radius 5 cm .

2 Using two drawing pins, a length of a string and a pencil do the following. Push the pins into a paper at two points. Tie the string into a loose loop around the two pins. Pull the loop taut with the pencil's tip so as to form a triangle. Move the pencil around while keeping the string taut.

3 What do you observe from the two drawings?

Definition 3.7

An ellipse is the locus of all points in the plane such that the sum of the distances from two given fixed points in the plane, called the foci, is constant.

Consider Figure 3.20, Here are some terminologies for ellipses.
$\checkmark \quad \mathrm{F}$ and F^{\prime} are foci.
$\checkmark \quad \mathrm{V}, \mathrm{V}^{\prime}, \mathrm{B}$ and B^{\prime} are called vertices of the ellipse.
$\checkmark \quad \overline{\mathrm{V}^{\prime} \mathrm{V}}$ is called the major axis and $\overline{\mathrm{B}^{\prime} \mathrm{B}}$ is called the minor axis.
$\checkmark \quad$ C, which is the intersection point of the major and minor axes is called the centre of the ellipse.
$\checkmark \quad \overline{\mathrm{CV}}$ and $\overline{\mathrm{CV}^{\prime}}$ are called semi- major axes and $\overline{\mathrm{CB}}$ and $\overline{\mathrm{CB}^{\prime}}$ are called semiminor axes.
$\checkmark \quad$ Chord $\overline{\mathrm{AA}^{\prime}}$ which is perpendicular to the major axis at F is called the latus rectum of the ellipse.
$\checkmark \quad$ The distance from the centre to a focus is denoted by c.
$\checkmark \quad$ The length of the semi- major axis is denoted by a and the length of the semi- minor axis is denoted by b.
$\checkmark \quad$ The eccentricity of an ellipse, usually denoted by e, is the ratio of the distance between the two foci to the length of the major axis, that is,

$$
e=\frac{\text { distance between the two foci }}{\text { lengh of the major axis }}=\frac{c}{a}
$$

which is a number between 0 and 1 .
Note that $\mathrm{V}^{\prime} \mathrm{F}^{\prime}=\mathrm{VF}$ and $\mathrm{VF}+\mathrm{VF}^{\prime}=\mathrm{VV}^{\prime}=2 a$, according to the definition. If P is any point on the ellipse, you have,

$$
\mathrm{PF}+\mathrm{PF}^{\prime}=2 a
$$

Since B is on the ellipse, you also have that $\mathrm{BF}+\mathrm{BF}^{\prime}=2 a$. $\mathrm{But} \mathrm{BF}=\mathrm{BF}^{\prime}$. This implies $\mathrm{BF}=a$. By using Pythagoras Theorem for right angled triangle BCF , you get,

$$
\mathrm{CB}^{2}+\mathrm{CF}^{2}=\mathrm{BF}^{2}
$$

But $\mathrm{CB}=b, \mathrm{CF}=c$ and $\mathrm{BF}=a$. Therefore a, b and c have the relation,

$$
b^{2}+c^{2}=\left\langle a^{2}\right\rangle
$$

Historical Note

Johannes Kepler (1571-1630)

In the 17th century, Johannes Kepler discovered that the orbits along which the planets travel around the Sun are ellipses with the Sun at one focus, (his first law of planetary motion).

Equation of an ellipse whose centre is at the origin

There are two cases to consider.
One of these cases is where the major axis of the ellipse is parallel to the x-axis as shown in Figure 3.21 below.

Figure 3.21
From the discussion so far, you have,

$$
\mathrm{PF}^{\prime}+\mathrm{PF}=2 a .
$$

This implies $\left.\sqrt{(x+c)^{2}+y^{2}}+\sqrt{(x} c\right)^{2}+y^{2}=2 a$

$$
\left.\left.\Rightarrow \sqrt{(x+c)^{2}+y^{2}}=2 a \quad \sqrt{(x} \quad c\right)^{2}+y^{2}\right)
$$

Squaring both sides gives you,

$$
(x+c)^{2}+y^{2}=4 a^{2} \quad 4 a \sqrt{(x \quad c)^{2}+y^{2}}+\left(\begin{array}{ll}
x & c
\end{array}\right)^{2}+y^{2}
$$

Thus, $4 a \sqrt{(x} c)^{2}+y^{2}=4 a^{2}+\left(\begin{array}{ll}x & c\end{array}\right)^{2} \quad(x+c)^{2}$
This implies $4 a \sqrt{(x \mathrm{c})^{2}+y^{2}}=4 a^{2}+x^{2} \quad 2 x c+c^{2} \quad x^{2} \quad 2 x c \quad c^{2}$
This gives you the result $a \sqrt{(x / c)^{2}+y^{2}}=a^{2}<c$
Squaring both sides gives

$$
\begin{aligned}
& a^{2}\left((x<c)^{2}+y^{2}\right)=\left(\begin{array}{ll}
a^{2} & c x
\end{array}\right)^{2} \\
& \Rightarrow a^{2}\left(x^{2} \quad 2 x c+c^{2}+y^{2}\right)=a^{4} \quad 2 a^{2} c x+c^{2} x^{2} \\
& \Rightarrow a^{2} x^{2} \quad 2 a^{2} c x+a^{2} c^{2}+a^{2} y^{2}=a^{4} \quad 2 a^{2} c x+c^{2} x^{2} \\
& \Rightarrow\left(a^{2} c^{2}\right) x^{2}+a^{2} y^{2}=a^{4} \quad a^{2} c^{2} \\
& \Rightarrow\left(a^{2} c^{2}\right) x^{2}+a^{2} y^{2}=a^{2}\left(\begin{array}{ll}
a^{2} & c^{2}
\end{array}\right)
\end{aligned}
$$

From the relation $a^{2}=b^{2}+c^{2}$, you get, $a^{2} \quad c^{2}=b^{2}$.
This gives you,

$$
b^{2} x^{2}+a^{2} y^{2}=a^{2} b^{2}
$$

By dividing both sides by $a^{2} b^{2}$, you have

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1
$$

This equation is called the standard form of an equation of an ellipse whose major axis is horizontal and centre is at $(0,0)$.

Example 14 Give the coordinates of the foci of the ellipse shown below. Give the equation of the ellipse and find the eccentricity of the ellipse.

Figure 3.22
Solution From the graph observe that $a=10$, and $b=6$. Since $a^{2}=b^{2}+c^{2}$, then $100=36+c^{2}$. Hence $c^{2}=64$. This implies $c=8$.

Therefore, the centre is $\mathrm{C}(0,0)$ and the foci are $\mathrm{F}^{\prime}(-c, 0)=\mathrm{F}^{\prime}(-8,0)$ and $\mathrm{F}(c, 0)=\mathrm{F}(8,0)$ since the major axis is horizontal.

Then the equation of the ellipse is $\frac{x^{2}}{100}+\frac{y^{2}}{36}=1$.
The eccentricity of the ellipse is $e=\frac{c}{a}=\frac{8}{10}=0.8$
Example 15 Find the equation of the ellipse with foci $\mathrm{F}^{\prime}(-2,0)$ and $\mathrm{F}(2,0), a=7$.
Solution $\mathrm{F}^{\prime}(-2,0)$ and $\mathrm{F}(2,0)$, implies that $\mathrm{C}(0,0)$ and $c=2$. The major axis of ellipse is horizontal.

From the relation $a^{2}=b^{2}+c^{2}$, you get $b^{2}=a^{2} \quad c^{2}=7^{2} \quad 2^{2}=45$.
Hence, the equation of the ellipse is, $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ or $\frac{x^{2}}{49}+\frac{y^{2}}{45}=1$.

Equation of an ellipse whose centre is $C(h, k)$ different from the origin

Figure 3.23
Let $\mathrm{C}(h, k)$ be the centre of the ellipse. Construct a new $x^{\prime} y^{\prime}$-coordinate system with origin at $\mathrm{C}(h, k)$. Then, for any point P on the ellipse with coordinates (x, y) in the $x y$-coordinate system and (x, y) in the new $x y$-coordinate system,

$$
\frac{x^{\prime 2}}{a^{2}}+\frac{y^{\prime 2}}{b^{2}}=1
$$

But then from translation formulae you have $x^{\prime}=x \quad h$ and $y^{\prime}=y \quad k$, which gives

$$
\frac{(x \quad h)^{2}}{a^{2}}+\frac{(y k)^{2}}{b^{2}}=1
$$

which is the standard equation of an ellipse with centre at $\mathrm{C}(h, k)$ and major axis parallel to the x-axis.

Similarly, when the major axis is vertical, the standard equation of the ellipse is given by:

$$
\frac{y^{2}}{a^{2}}+\frac{x^{2}}{b^{2}}=1 \text {, when } \mathrm{C}(0,0) \text { and } \frac{(y k)^{2}}{O a^{2}}+\frac{(x h)^{2}}{b^{2}}=1 \text {, when } \mathrm{C}(h, k)
$$

Example 16 Find the coordinates of the centre, foci, the length of the major and minor axes, draw the graph of the ellipse, find the eccentricity of the ellipse and the length of the latus rectum.

$$
\frac{\left(\begin{array}{ll}
x \quad 2
\end{array}\right)^{2}}{9}+\frac{(y 1)^{2}}{01}=1
$$

The centre of the ellipse is $\mathrm{C}(2,1)$ and the major axis is horizontal. Also $a^{2}=9$ and $b^{2}=1$, which implies $a=3$ and $b=1$. Then the length of the major axis is 6 and the length of the minor axis is 2 . Hence the vertices are $\mathrm{V}^{\prime}(-1,1), \quad \mathrm{V}(5,1), \quad \mathrm{B}^{\prime}(2,0)$ and $\mathrm{B}(2,2)$.

From the relation $c^{2}=a^{2} \quad b^{2}$, you get $\mathrm{c}=2 \sqrt{2}$ and the foci are $\mathrm{F}(2 \quad 2 \sqrt{2}, 1)$ and $\mathrm{F}^{\prime}(2+2 \sqrt{2}, 1)$.

The eccentricity e of the ellipse is $e=\frac{c}{a}=\frac{2 \sqrt{2}}{3}$.
The lines containing the latus rectums are vertical lines. These lines are $x=2+\sqrt{2}$ and $x=2 \quad \sqrt{2}$. The intersection points of the line $x=2+\sqrt{2}$ and the ellipse are given by:

$$
\frac{(2+\sqrt{2} \quad 2)^{2}}{9}+\frac{\left(\begin{array}{ll}
y & 1
\end{array}\right)^{2}}{1}=1 .
$$

Solving this gives you: $y=\frac{3 \pm \sqrt{7}}{3}$.
Hence, the end points of one of the latus rectums are:

$$
\left(2+\sqrt{2}, \frac{3 \pm \sqrt{7}}{3}\right) .
$$

Therefore, the length of the latus rectum is $\frac{2 \sqrt{7}}{3}$.
The graph of the ellipse is given in Figure 3.24.

Figure 3.24
Example 17 Find the coordinates of the centre, foci, the length of the major and minor axes, draw the graph of the ellipse.

$$
\frac{(y+2)^{2}}{25}+\frac{(x+2)^{2}}{16}=1
$$

Solution The centre of the ellipse is $C(-2,-2)$ and the major axis is vertical. Also $a^{2}=25$ and $b^{2}=16$, which implies $a=5$ and $\mathrm{b}=4$. So the length of the major axis is 10 and the length of the minor axis is 8 and also $c=\sqrt{a^{2} b^{2}}=3$.

Therefore the foci are $(h, k \pm c)=(2,2 \pm 3)$, that is, $\mathrm{F}^{\prime}(2,5), \mathrm{F}(2,1)$ and also the vertices are $\mathrm{V}^{\prime}(-2,-7), \mathrm{V}(-2,3), \mathrm{B}^{\prime}(-6,-2)$, and $\mathrm{B}(2,-2)$.
The graph of the ellipse is given in Figure 3.25.

Figure 3.25

Exercise 3.5

1 Write the equation of each ellipse described below.
a $\quad \mathrm{C}(0,0) ; a=6, b=4$; horizontal major axis
b Foci $(-3,0),(3,0) ; a=8$
c $\quad \mathrm{C}(0,0) ; a=8, b=6$; vertical major axis
d $\quad \mathrm{C}(5,0) ; a=5, b=2$; horizontal major axis
2 Name the centre, the foci and the vertices of each ellipse whose equation is given.
Also sketch the graph of each ellipse.
a $\quad \frac{(x \quad 3)^{2}}{25}+\frac{(y 4)^{2}}{16}=1$
b $\quad \frac{(y+2)^{2}}{25}+\frac{(x \quad 1)^{2}}{4}=1$
c $\left.\quad \frac{(y \quad 2}{y}\right)^{2}+\frac{\left(\begin{array}{ll}x & 3\end{array}\right)^{2}}{5}=1$
3 Find the equation of the ellipse with
a centre at $(1,4)$ and vertices at $(10,4)$ and $(1,2)$
b foci at $(-1,0),(1,0)$ and the length of the major axis 6 units.
c vertex at $(6,0)$, focus at $(-1,0)$ and centre at $(0,0)$.
d centre at $\left(0, \frac{-1}{2}\right)$, focus at $(0,1)$ and passing through $(2,2)$.
e centre $(0,0)$, vertex $(0,-5)$ and length of minor axis 8 units.
4 The planet Mars travels around the Sun in an ellipse whose equation is approximately given by

$$
\frac{x^{2}}{(228)^{2}}+\frac{y^{2}}{(227)^{2}}=1
$$

where x and y are measured in millions of kilometres. Find
a the distance from the Sun to the other focus of the ellipse(in millions of kilometres).
b how close Mars gets to the Sun.
c the greatest possible distance between Mars and the Sun.

3.2.5 Hyperbolas

Definition 3.8

A hyperbola is defined as the locus of points in the plane such that the difference between the distances from two fixed points is a constant. The fixed points are called foci. The point midway between the foci is called the centre of the hyperbola.

Figure 3.26
Consider Figure 3.26. Here are some terminologies for hyperbolas.
F and F^{\prime} are the foci of the hyperbola.
C is the centre of the hyperbola.
$\checkmark \quad$ The points V and V^{\prime} on each branch of the hyperbola nearest to the centre are called vertices.
$\checkmark \quad \overline{\mathrm{V}^{\prime} \mathrm{V}}$ is called the transverse axis of the hyperbola and $\mathrm{CV}=\mathrm{CV}^{\prime}$ is denoted by a and $\mathrm{CF}=\mathrm{CF}^{\prime}$ is denoted by c.
$\checkmark \quad$ Denote $c^{2} \quad a^{2}$ by $b^{2,}$ so that $b=\sqrt{c^{2} a^{2}}$.
$\checkmark \quad$ The segment of symmetry perpendicular to the transverse axis at the centre, which has length $2 b$, is called the conjugate axis.
$\checkmark \quad$ The end points B and B ' of the conjugate axis of the hyperbola are called co-vertices.
\checkmark The eccentricity of the hyperbola, usually denoted by e, is the ratio of the distance between the two foci to the length of the transverse axis, that is,

$$
e=\frac{\text { distance between the two foci }}{\text { lengh of the transverse axis }}
$$

which is a number greater than 1.
$\checkmark \quad$ The chords with end points on the hyperbola passing through the foci and perpendicular to $\overline{\mathrm{FF}^{\prime}}$ are called the latus rectums.

\measuredangle Note:

Hyperbolas occur frequently as graphs of equations in Chemistry, Physics, Biology and Economics (Boyle's Law, Ohm's Law, supply and demand curves).

Equation of a hyperbola with centre at the origin and whose transverse axis is horizontal

Consider a hyperbola with foci $\mathrm{F}^{\prime}(-c, 0), \mathrm{F}(c, 0)$ and centre $\mathrm{C}(0,0)$.
Then, a point $\mathrm{P}(x, y)$ is on the hyperbola, if and only if

$$
\sqrt{\left(\begin{array}{ll}
x & c)^{2}+y^{2}
\end{array} \sqrt{(x+c)^{2}+y^{2}}= \pm 2 a, ~\right.}
$$

Adding $\sqrt{(x+c)^{2}+y^{2}}$ to both sides of the above equation gives you

$$
\sqrt{(x c)^{2}+y^{2}}= \pm 2 a+\sqrt{(x+c)^{2}+y^{2}} .
$$

By squaring both sides you have,

$$
(x c)^{2}+y^{2}=4 a^{2} \pm 4 a \sqrt{(x+c)^{2}+y^{2}}+(x+c)^{2}+y^{2} \text {. }
$$

This implies $\pm 4 a \sqrt{(x+c)^{2}+y^{2}}=4 a^{2}+x^{2}+2 x c+c^{2} \quad x^{2}+2 x c \quad c^{2}$

That is $\pm 4 a \sqrt{(x+c)^{2}+y^{2}}=4 a^{2}+4 x c$.
This implies, $\pm a \sqrt{(x+c)^{2}+y^{2}}=a^{2}+x c$.
Again squaring both sides of the above equation gives you:

$$
a^{2}\left((x+c)^{2}+y^{2}\right)=a^{4}+2 a^{2} x c+x^{2} c^{2}
$$

This implies, $\left(\begin{array}{ll}a^{2} & c^{2}\end{array}\right) x^{2}+a^{2} y^{2}=a^{2}\left(\begin{array}{ll}a^{2} & c^{2}\end{array}\right)$.
Recall that $c^{2} \quad a^{2}=b^{2}$. Thus, $-b^{2} x^{2}+a^{2} y^{2}=-a^{2} b^{2}$, which reduces to

$$
\frac{x^{2}}{a^{2}} \quad \frac{y^{2}}{b^{2}}=1
$$

This equation is called the standard form of equation of a hyperbola with centre at $\mathrm{C}(0,0)$ and transverse axis horizontal.

Example 18 Find the equation of a hyperbola, if the foci are $F(2,5)$ and $F^{\prime}(4,5)$ and the transverse axis is 4 units long. Draw the graph of the hyperbola.

Solution The mid-point of $\overline{\mathrm{FF}^{\prime}}$ is the centre of the hyperbola and it is $\mathrm{C}(1,5)$. The transverse axis is $2 a=4$. So, $a=2$ and $\mathrm{FF}^{\prime}=2 c=6$.
Besides, since F and F^{\prime} lie on a horizontal line, the transverse axis is horizontal,
Using the relation $b^{2}=c^{2} \quad a^{2}=9 \quad 4=5$, the equation becomes

$$
\frac{(x+1)^{2}}{4} \quad \frac{(y 5)^{2}}{5}=1
$$

The graph of the hyperbola is given in Figure 3.27.

Figure 3.27

ACTIVITY 3.7

Consider the hyperbola with equation

$$
\frac{x^{2}}{9} \quad \frac{y^{2}}{16}=1
$$

and answer each of the following.
a Draw the graph of the hyperbola with the equation given above.
b Mark the points with coordinates $(\pm 3,0)$ on the x-axis and with coordinates $(0, \pm 4)$ on the y-axis.
c Draw a rectangle with sides passing through the points in b above and parallel to the coordinate axes.
d Draw the lines that contain the diagonals of the rectangle in c above.

Asymptotes

If a point P on a curve moves farther and farther away from the origin, and the distance between P and some fixed line tends to zero, then such a line is called an asymptote to the curve.
From Activity 3.7 you may have observed that the lines through the diagonals of a rectangle that passes through points with coordinates $(\pm 3,0)$ on the x-axis and $(0, \pm 4)$ on the y-axis and parallel to the coordinate axes are asymptotes to the graph of the hyperbola with equation

$$
\frac{x^{2}}{9} \frac{y^{2}}{16}=1
$$

Consider the hyperbola with equation

$$
\frac{x^{2}}{a^{2}} \sqrt{y^{2}}=1
$$

This equation is equivalent to
or

$$
\frac{x}{a}<\frac{y}{b}=\frac{a b}{b x+a y}
$$

One branch of the hyperbola lies in the first quadrant. If a point P on the hyperbola moves farther and farther away from the origin on this branch of the hyperbola, then x and y become infinite and

$$
\frac{a b}{b x+a y}
$$

tends to zero. This implies the line

$$
\frac{x}{a} \quad \frac{y}{b}=0 \quad \text { or } \quad y=\frac{b}{a} x
$$

is an asymptote to the graph of the hyperbola.
By symmetry, the line
$\frac{x}{a}+\frac{y}{b}=0 \quad$ or $\quad y=\frac{b}{a} x$
is also an asymptote to the graph of the hyperbola.
If you interchange x and y in the equation

$$
\frac{x^{2}}{a^{2}} \quad \frac{y^{2}}{b^{2}}=1,
$$

the new equation becomes

$$
\frac{y^{2}}{a^{2}} \quad \frac{x^{2}}{b^{2}}=1
$$

and represents a hyperbola with foci $\mathrm{F}(0,-c)$ and $\mathrm{F}^{\prime}(0, c)$, vertices $\mathrm{V}(0,-a)$ and $\mathrm{V}^{\prime}(0, a)$, co-vertices $\mathrm{B}(-b, 0)$ and $\mathrm{B}(b, 0)$, centre $\mathrm{C}(0,0)$, the transverse axis is on y-axis. In this case, the lines $y= \pm \frac{a}{b} x$ are asymptotes to the graph of the hyperbola.
Let $\mathrm{C}(h, k)$ be the centre of the hyperbola. Construct a new $x^{\prime} y^{\prime}$-coordinate system with origin at (h, k). Then, for any point P on the hyperbola with coordinates (x, y) in the $x y$-coordinate system and (x, y) in the new $x y$-coordinate system,

$$
\frac{x^{\prime 2}}{a^{2}} \frac{y^{\prime 2}}{b^{2}}=1
$$

Using translation formulae $x^{\prime}=x \quad h$ and $y^{\prime}=y \quad k$, this reduces to

$$
\frac{(x \quad h)^{2}}{a^{2}} \quad \frac{(y k)^{2}}{b^{2}}=1
$$

which is the standard equation of a hyperbola with centre at $\mathrm{C}(h, k)$ and transverse axis parallel to the x-axis.

Similarly, when the transverse axis is vertical, the standard equation of the hyperbola is given by:

$$
\begin{aligned}
& \frac{y^{2}}{a^{2}} \frac{x^{2}}{b^{2}}=1 \text {, when } \mathrm{C}(0,0) \text { and } \\
& \frac{(y}{(y)^{2}} \\
& a^{2}
\end{aligned} \frac{(x h)^{2}}{b^{2}}=1, \text { when } \mathrm{C}(h, k) \text { }
$$

The following table gives all possible standard forms of equations of hyperbolas.

Equation	Centre	Transverse axis	Asymptotes
$\frac{x^{2}}{a^{2}} \quad \frac{y^{2}}{b^{2}}=1$	$(0,0)$	horizontal	$y= \pm \frac{b}{a} x$
$\frac{\left(\begin{array}{ll}x & h\end{array}\right)^{2}}{a^{2}} \quad \frac{\left(\begin{array}{ll}y & k\end{array}\right)^{2}}{b^{2}}=1$	(h, k)	horizontal	$y \quad k=\left(\pm \frac{b}{a}\left(\begin{array}{ll}x & h\end{array}\right)\right.$
$\frac{y^{2}}{a^{2}} \quad \frac{x^{2}}{b^{2}}=1$	$(0,0)$	vertical	$y= \pm \frac{a}{b} x$
$\left.\frac{\left(\begin{array}{ll}y & k\end{array}\right)^{2}}{a^{2}} \quad \frac{(x \quad h}{}\right)^{2} b^{2}{ }^{\text {a }}$	(h, k)	vertical	$y \quad k=\left(\pm \frac{a}{b}\left(\begin{array}{ll}x & h\end{array}\right)\right)$

Example 19 Find asymptotes of the hyperbola, if the foci are $F(2,5)$ and $F^{\prime}(-4,5)$ and the transverse axis is 4 units long.

Solution From Example 18, the equation of the hyperbola is:

$$
\frac{(x+1)^{2}}{4} \quad \frac{(y 5)^{2}}{5}=1
$$

The asymptotes of the hyperbola are:

$$
y \quad k= \pm\left(\frac{b}{a}(x \quad h) .\right.
$$

That is $y \quad 5= \pm\left(\frac{\sqrt{5}}{2}(x+1)\right) \Rightarrow y= \pm\left(\frac{\sqrt{5}}{2}(x+1)\right)+5$
which gives the lines with equations

$$
y=\frac{\sqrt{5}}{2} x+\frac{\sqrt{5}+10}{2}, \text { and } y=\frac{\sqrt{5}}{2} x+\frac{10 \sqrt{5}}{2} .
$$

Example 20 Find the equation of the hyperbola with vertices $(1,2)$ and $(1,-2)$, and $b=2$.
Solution The vertices tie on a vertical line. Thus, the equation must have the form

$$
\frac{\left(\begin{array}{ll}
y & k
\end{array}\right)^{2}}{a^{2}} \quad \frac{(x \quad h)^{2}}{b^{2}}=1
$$

The centre is mid way between $(1,2)$ and $(1,-2)$. So, $\mathrm{C}(1,0)$.
Also $2 a=\mathrm{VV}^{\prime}=4 \Rightarrow a=2$.
It follows that the equation is $\frac{(y 0)^{2}}{4} \quad \frac{(x \quad 1)^{2}}{4}=1$

$$
\text { or } \frac{y^{2}}{4} \frac{(x \quad 1)^{2}}{4}=1
$$

Example 21 Sketch the hyperbola with equation:

$$
16 y^{2} \quad 9 x^{2}=144
$$

Draw its asymptotes and give the coordinates of its vertices and foci.
Solution The equation $16 y^{2} \quad 9 x^{2}=144$ is equivalent to $\frac{16 y^{2}}{144} \quad \frac{9 x^{2}}{144}=1$.
Therefore, the equation of the hyperbola is $\frac{y^{2}-x^{2}}{9}=1$.
This implies the centre is $\mathrm{C}(0,0), a=3, b=4$, and the vertices of the hyperbola are $\mathrm{V}^{\prime}(0,-3)$, and $\mathrm{V}(0,3)$.
From the relation $c^{2}=a^{2}+b^{2}=25$, you get $c=5$.
Hence the foci are $\mathrm{F}^{\prime}\left(\begin{array}{ll}h, k & c\end{array}\right)$ and $\mathrm{F}(h, k+c)$, which implies $\mathrm{F}^{\prime}(0,-5)$ and $\mathrm{F}(0,5)$.
Asymptotes of the hyperbola are: $y= \pm \frac{a}{b} x$. That is, $y= \pm \frac{3}{4} x$.
The graph of the hyperbola is given in Figure 3.28,

Figure 3.28

Exercise 3.6

1 Find the equation of each hyperbola with the information given below.
a Centre at $\mathrm{C}(0,0) ; a=8, b=5$, having horizontal transverse axis.
b Foci at $\mathrm{F}(10,0)$ and $\mathrm{F}^{\prime}(-10,0) ; 2 a=16$.
c Centre C($-1,4$), $a=2, b=3$; vertical transverse axis.
d Vertices $\mathrm{V}(2,1), \mathrm{V}^{\prime}(-2,1) ; b=2$.
2 Name the centre, foci, vertices and the equations of the asymptotes of each hyperbola given below. Also sketch their graph.
a $\frac{x^{2}}{36} \frac{y^{2}}{81}=1$
b $\frac{(x+3)^{2}}{9} \frac{(y+6)^{2}}{36}=1$
c $\frac{y^{2}}{25} \quad \frac{x^{2}}{16}=1$
d $\frac{\left(\begin{array}{ll}y & 3\end{array}\right)^{2}}{25} \frac{(x \quad 2)^{2}}{25}=1$
3 Write the equation of each hyperbola satisfying the following conditions:
a Centre $\mathrm{C}(4,-2)$; focus $\mathrm{F}(7,-2)$; vertex $\mathrm{V}(6,-2)$
b Centre $\mathrm{C}(4,2)$; vertex $\mathrm{V}(4,5)$; equation of one asymptote is $4 y \quad 3 x=-4$.
c Vertices at $\mathrm{V}(0,-4), \mathrm{V}^{\prime}(0,4)$; foci at $\mathrm{F}(0,5), \mathrm{F}^{\prime}(0,-5)$
d Vertices at $\mathrm{V}(-2,3), \mathrm{V}^{\prime}(6,3)$; one focus at $\mathrm{F}(-4,3)$
e The transverse axis coincides with the x-axis, centre at $\mathrm{C}(2,0)$; lengths of transverse and conjugate axes equal to 8 and 6 , respectively.
f The length of the transverse axis is equal to 8 ; the end points of the conjugate axis are $\mathrm{A}(5,-5)$ and $\mathrm{B}(5,3)$.

4 A hyperbola for which $a=b$ is called equilateral. Show that a hyperbola is equilateral, if and only if its asymptotes are perpendicular to each other.

[3] Key Terms

angle of inclination	major axis asymptote	slope- intercept form tangent line
axis	parallel lines	translation formulas
centre	perpendicular lines	transverse axis
conjugate axis	point of tangency	two- point form
directrix	point- slope form	vertex
focal length	secant line	
focus	slopercept	
latus rectum	Summary	

1 The slope of a line through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by $\frac{y_{2}}{x_{2}} \begin{aligned} & x_{1}\end{aligned}$.
2 Two point form: If $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ with $x_{1} \quad x_{2}$ are given, the line through them has an equation $y \quad y_{1}=\left(\begin{array}{ll}y_{2} & y_{1} \\ x_{2} & x_{1}\end{array}\right)\left(\begin{array}{ll}x & x_{1}\end{array}\right)$

3 Point-slope form: If a point $\left(x_{1}, y_{1}\right)$ and slope m are given, the equation of the line is $y \quad y_{1}=m\left(\begin{array}{ll}x & x_{1}\end{array}\right)$
4 Slope-intercept form: If the slope m and y-intercept b are given, then the equation of the line is $y=m x+b$.
5 Two lines are parallel if and only if they have the same angle of inclination.
6 The slope of a non- vertical line is tan , where is the angle of inclination of the line, with $0<180^{\circ}$.

7 The angle between two non-vertical lines is given by the formula $\tan =\frac{m \quad n}{1+m n}$, where m and n are the slopes of the lines.

8 Two lines are perpendicular if and only if the angle between them is 90°.
9 If two perpendicular lines are non-vertical, then $m n=-1$, where m and n are their slopes.
10 The general form of equation of a line is $A x+B y+C=0$, where $A \quad 0$ or B 0 are fixed real numbers.

11 The distance from the origin to the line $A x+B y+C=0$ is given by $\frac{|C|}{\sqrt{A^{2}+B^{2}}}$
12 The distance from $\mathrm{P}(h, k)$ to $A x+B y+C=0$ is $\frac{|A h+B k+C|}{\sqrt{A^{2}+B^{2}}}$
13 If the $x y$-coordinate system is translated to a new $x^{\prime} y^{\prime}$-coordinate system with origin at $C(\mathrm{~h}, \mathrm{k})$, then the translation formulae are

$$
\begin{array}{cc}
x^{\prime}=x & h \\
y^{\prime}=y & k
\end{array}
$$

14 The standard form of the equation of a circle is $\left(\begin{array}{ll}x & h\end{array}\right)^{2}+\left(\begin{array}{ll}y & k\end{array}\right)^{2}=r^{2}$, where (h, k) is the centre and r is the radius.
15 The line that touches a circle at only one point is called a tangent line and its equation is $\frac{y y_{0}}{x x_{0}}=\frac{\left(x_{0} \quad h\right)}{y_{0} \quad k}$, where $\left(x_{0}, y_{0}\right)$ is the point of tangency and (h, k) is the centre of the circle.
16 The standard equation of a parabola is either
$(x \quad h)^{2}= \pm 4 p(y$
k) (axis // to the y-axis)
or $\quad\left(\begin{array}{ll}y & k\end{array}\right)^{2}= \pm 4 p(x$
h) (axis // to the x-axis)

17 The standard equation of an ellipse is either

$$
\frac{\left(\begin{array}{ll}
x & h
\end{array}\right)^{2}}{a^{2}}+\frac{\left(\begin{array}{ll}
y & k
\end{array}\right)^{2}}{b^{2}}=1 \quad \text { (major axis horizontal) }
$$

or $\quad \frac{(y k)^{2}}{a^{2}}+\frac{(x h)^{2}}{b^{2}}=1 \quad$ (major axis vertical)
where $b^{2}+c^{2}=a^{2}$
18 The standard equation of a hyperbola is either

$$
\begin{array}{lll}
& \frac{(x h)^{2}}{a^{2}} & \frac{(y k)^{2}}{b^{2}}=1 \\
\text { or } \quad \frac{(y k)^{2}}{a^{2}} & \frac{(x h)^{2}}{b^{2}}=1 & \text { (transverse axis horizontal) } \\
\text { where } a^{2}+b^{2}=c^{2} & \text { (transverse axis vertical) }
\end{array}
$$

19 The equations of the asymptotes of a hyperbola with a horizontal transverse axis are

$$
y \quad k= \pm \frac{b}{a}\left(\begin{array}{ll}
x & h
\end{array}\right)
$$

and those with vertical transverse axis are $y \quad k= \pm \frac{a}{b}\left(\begin{array}{ll}x & h\end{array}\right)$

Review Exercises on Unit 3

1 Write each of the following in the general form of equation of a line.
a $\quad y=3$
b $\quad x=9$
c $y=\frac{1}{2} x+4$
d $\quad \begin{array}{llllll}y & 3=4 & x & \text { e } \quad 3 x=7 & 4 y\end{array}$

2 Give the equation of the line that satisfies the given conditions:
a passes through $\mathrm{P}(2,3)$ and has slope 1 .
b passes through $\mathrm{P}(3,7)$ and $\mathrm{Q}(6,10)$.
c parallel to the line with equation $y=3 x \quad 4$ and passes through $\mathrm{A}(3,2)$.
d perpendicular to the line with equation $6 x=2 y \quad 4$ and y-intercept 4 .
3 Find the tangent of the acute angle between the following lines:
a $\quad 2 x+y \quad 2=0$
$3 x+y+1=0$
b $\quad x \quad 6 y+5=0$
$2 y \quad x \quad 1=0$
C $\quad x \quad 5 y \quad 2=0$
d $x \quad 6 y+5=0$
y $\quad 4 x+7=0$
$2 y \quad x \quad 1=0$

4 Find the distance from the given point to the line whose equation is given.
a $\quad \mathrm{P}(4,3) ; 2 x \quad 3 y+2=0$
b $\quad \mathrm{A}(0,0) ; 2 x \quad 3 y+2=0$
c $\quad \mathrm{Q}(1,0) ; 2 x \quad 3 y+2=0$
d $\quad \mathrm{B}(2,4) ; 4 y=3 x \quad 1$

5 Find the distance between the pairs of parallel lines whose equations are given below:
a $\quad 2 x \quad 3 y+2=0$ and $2 x \quad 3 y+6=0$
b $\quad 4 y=3 x \quad 1$ and $8 y=6 x \quad 7$

6 Write the equation of each circle with the given conditions:
a centre at $\mathrm{O}(3,7)$ and radius 3
b centre at $\mathrm{P}(3,7)$ and tangent to $2 x+3 y \quad 4=0$
c end points of its diameter are $\mathrm{A}(3,7)$ and $\mathrm{B}(4,3)$
7 Find the equation of the tangent line to the circle with equation $\left(\begin{array}{ll}x & 3\end{array}\right)^{2}+\left(\begin{array}{ll}y & 4\end{array}\right)^{2}=20$ at $\mathrm{P}(1,0)$.

8 Find the equation of the parabola with the following conditions.
a focus at $\mathrm{F}(2,0)$; directrix $x=2$
b focus at $\mathrm{F}(3,3)$; vertex at $\mathrm{V}(3,2)$
c vertex at $\mathrm{O}(0,0)$; axis y-axis; passes through $\mathrm{A}(1,1)$
9 For each parabola whose equation is given below, find the focus, vertex, directrix and axis.
a $\quad(x \quad 1)^{2}=y+2$
b $\quad x^{2}=6 y$
C $\quad 4(x+1)=2(y+2)^{2}$

10 Write the equation of each ellipse that satisfies the following conditions.
a The foci are $F(3,0)$ and $F^{\prime}(3,0)$; vertices $V(5,0)$ and $V^{\prime}(5,0)$.
b The foci are $\mathrm{F}(3,2)$ and $\mathrm{F}^{\prime}(3,2)$; the length of the major axis is 8 .
c The foci are $F(4,7)$ and $F^{\prime}(4,7)$; the length of the minor axis is 9 .
d The centre is $\mathrm{C}(6,2)$; one focus is $\mathrm{F}(3,2)$ and one vertex is $\mathrm{V}(10,2)$.
11 Find the foci and vertices of each of the ellipses whose equations are given.

$$
\text { a } \quad 4 x^{2}+y^{2}=8 \quad \text { b } \quad \frac{(x 1)^{2}}{4}+\frac{(y+2)^{2}}{9}=1
$$

12 Give the equation of a hyperbola satisfying the following conditions:
a foci at $\mathrm{F}(9,0)$ and $\mathrm{F}^{\prime}(9,0)$; vertices at $\mathrm{V}(4,0)$ and $\mathrm{V}^{\prime}(4,0)$.
b foci at $\mathrm{F}(0,6)$ and $\mathrm{F}^{\prime}(0,6)$; length of transverse axis is 6 .
c the foci at $\mathrm{F}(0,10)$ and $\mathrm{F}^{\prime}(0,10)$; asymptotes $y= \pm 3 x$.
13 Find the vertices, foci, eccentricity and asymptotes of each hyperbola whose equation is given and sketch the hyperbola.
a $\quad 9 x^{2} \quad 16 y^{2}=144$
b $\quad \frac{(x+3)^{2}}{25} \quad \frac{(y+1)^{2}}{144}=1$

14 An arch is in the form of a semi-ellipse. It is 50 metres wide at the base and has a height of 20 metres. How wide is the arch at the height of 10 metres above the base?

Hint:- Take the x-axis along the base and the origin at the midpoint of the base.

15 An astronaut is to be fired into an elliptical orbit about the earth having a minimum altitude of 800 km and a maximum altitude of 5400 km . Find the equation of the curve followed by the astronaut. Consider the radius of the earth to be 6400 km .

